## crusher efficiency calculations

The following example demonstrates a method of selecting the components of an aggregate plant. Good component efficiency and part performance pre-evaluation is essential to a solid design. The aggregate production requires the consideration of several crushers, feeders and screens. This is not intended to be a typical situation, though it does involve common crusher and screen units often used in aggregate plants.

Quarry rock of 12 in. maximum size is to be handled in a two-stage crusher plant at the rate of 70 tons per hour. The maximum size of output is to be 1 in., and separation of materials over 1 in. size and the minus 1 in. in the output is required. Select a jaw crusher like those included in this table.

The screens to be considered are a 1-in. screen with an estimated capacity of 2.7 tph/sq ft and a 1-in. screen with a capacity of 2.1 tph/sq ft. The solution will include the selection of adequate and economical crushers for the two stages and the sizes of screens between them and below the secondary stage.

For the primary crusher a jaw crusher will probably be most economical. A jaw crusher, like 2036 in the Jaw Crusher Table here above, would be able to take the maximum 12 in. size quarry stone but it would not have the required 70 tph capacity needed. To have the needed capacity a jaw crusher like the 2042 or 2436 sizeswill have to be selected overloading the secondary crusher.

A grid chart or curve for the selected crusher shows that, for a 2-in. setting, 54% of the material will pass a 1-in. screen, or 46% will be retained (this is like Jaw Crusher capacity table abovewhere 48% passes a 1 in. screen). The 46% of 70 tph gives the 32 tph fed to the secondary crusher shown in Figure below as a roll crusher.

A twin-roll crusher is selected, like those given inthe Roll Crusher capacityTable above, to serve as the reduction crusher. The smallest, 24 x 16 roll crusher shown in theRoll Crusher capacity Table above has enough capacity with a setting of 1 in. but the maximum size feed will be too large, that is, the stage of reduction is not large enough. The maximum size of feed coming from the discharge of the primary crusher with a setting of 2 is about 3 in. as may be found in this Table.

Considering a 30-in. diameter roll crusher the maximum size particle that can be nipped with the roll crusher set at 1 in. according to this Equation is F = 0.085(15) + 1.0 = 2.28 in. <3 in. feed. It will take larger than a 40-in. diameter roll crusher. A better solution would be to use a larger jaw crusher set at 1 in., then a roll crusher from the Roll Crusher capacityTable above could be used. If the output of this crushing process should have less material of the +1-in. size, the larger crusher could be operated with a closed circuit. That is, the oversize in the output could be recirculated through the roll crusher without exceeding the rated capacity of the crusher. Then all material leaving that crusher with a 1-in. setting would be of a minus 1-in. size.

Another possible solution to this problem would be to use a gyratory crusher for the primary crushing stage. A gyratory like Telsmith model1110 could be set at 1 in. in an open circuit with a capacity for 260 tph. The maximum size of stone in the output is estimated to be approximately 2 1/8 in. Then all the output from the primary crusher could be nipped by a 40 in. diameter twin-roll crusher with a 1-in. setting according to the Roll Crusher capacityTable above. The specifications and manufactured limitations, rather than economy, generally govern the selection of crushers.

To find the required areas of screen, the rate of feed of material as well as gradation of the feed must be known. The 1-in. screen under the jaw crusher is the top deckno deck correction factor will be necessary. Therefore, the 1-in. screen will need to be at least 70/2.7 = 29.9 sq ft in area. It must be at least 36 in. wide for an 18 x 36 jaw crusher. So a 4-ft by 8-ft screen would be acceptable. The 1-in. screen is a second deck for the 38 tph from the jaw crusher, so the deck correction factor is 0.90 and that screen capacity is 2.1 x 0.9 = 1.89 tph/sq ft.

The screen area needed under the jaw crusher is 38/1.89 = 20.1 sq ft. For the 1-in. screen below the roll crusher the capacity has no correction factor and the area needed is 32/2.1 = 15.2 sq ft. To handle the output from a 40 x 24 roll crusher the screen will have to be at least 24 in. wide. Perhaps it will be more effective to use one continuous screen of at least 20.1 + 15.2 = 35.3 sq ft. A 4-ft by 10-ft 1 in. screen should be satisfactory.

## forces in a cone crusher | springerlink

The literature on the design of cone crushers and analysis of the corresponding crushing processes is mainly based on empirical observations. As a result, it is generally accepted that the crushing action is due solely to compressive forces. Crushers are designed on that basis. Accordingly, many cone crushers today are characterized by common operating principles. Most theoretical work on cone crushers focuses on performance characteristics such as the productivity, degree of crushing, or increase in content of the target fraction or on operational characteristics of individual crusher components such as the life of the armored lining or the increase in life of bearings and drives. To improve those characteristics, a crushing-chamber design with complex armored lining has been developed, while the working components (cones) combine elements of those used in other crushers (of roller or jaw type). However, kinematic efficiency of the working component is only considered in terms of the creation of compressive forces in the material being crushed and minimization of slip. Most of the energy supplied to any crusher is consumed in creating the destructive load. The basic contention of the present work is that, in certain circumstances, it is possible to increase the energy efficiency of the crushing process. One option is to create a complex stress state in the material to be crushed. Some crusher designs are considered, and their applicability is discussed. The creation of a complex stress state in the crusher permitting decrease in its energy consumption is described. Recommendations are made regarding the creation of energy-efficient conditions in the crusher.

Johansson, M., Quist, J., Evertsson, M., and Hulthn, E., Cone crusher performance evaluation using DEM simulations and laboratory experiments for model validation, Miner. Eng., 2017, vols. 103104, pp. 93101.

Vitushkin, A.V., Development of kinematic scheme and calculation methods of parameters of crushing machine with translational motion of jaws, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Novokuznetsk, 2013.

Nikitin, A.G., Laktionov, S.A., and Sakharov, D.F., Mathematical model of process of deterioration of a brittle material in a single-roll crusher, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2012, no. 8, pp. 3638.

Nikitin, A.G., Laktionov, S.A., and Kuznetsov, M.A., Position of plane of maximum shear stress at fracture of brittle pieces in roll crushers, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2013, no. 7, pp. 4244.

## cone crusher - an overview | sciencedirect topics

Cone crushers were originally designed and developed by Symons around 1920 and therefore are often described as Symons cone crushers. As the mechanisms of crushing in these crushers are similar to gyratory crushers their designs are similar, but in this case the spindle is supported at the bottom of the gyrating cone instead of being suspended as in larger gyratory crushers. Figure5.3 is a schematic diagram of a cone crusher.

The breaking head gyrates inside an inverted truncated cone. These crushers are designed so that the head-to-depth ratio is larger than the standard gyratory crusher and the cone angles are much flatter and the slope of the mantle and the concaves are parallel to each other. The flatter cone angles help to retain the particles longer between the crushing surfaces and therefore produce much finer particles. To prevent damage to the crushing surfaces, the concave or shell of the crushers is held in place by strong springs or hydraulics which yield to permit uncrushable tramp material to pass through.

The secondary crushers are designated as Standard cone crushers having stepped liners and tertiary Short Head cone crushers, which have smoother crushing faces and steeper cone angles of the breaking head. The approximate distance of the annular space at the discharge end designates the size of the cone crushers. A brief summary of the design characteristics is given in Table5.4 for crusher operation in open-circuit and closed-circuit situations.

The Standard cone crushers are for normal use. The Short Head cone crushers are designed for tertiary or quaternary crushing where finer product is required. These crushers are invariably operated in closed circuit. The final product sizes are fine, medium or coarse depending on the closed set spacing, the configuration of the crushing chamber and classifier performance, which is always installed in parallel.

For finer product sizes, i.e., less than 6mm, special cone crushers known as Gyradisc crushers are available. The operation is similar to the standard cone crushers, except that the size reduction is caused more by attrition than by impact [5]. The reduction ratio is around 8:1 and as the product size is relatively small the feed size is limited to less than 50mm with a nip angle between 25 and 30. The Gyradisc crushers have head diameters from around 900 to 2100mm. These crushers are always operated under choke feed conditions. The feed size is less than 50mm and therefore the product size is usually less than 69mm.

Maintenance of the wear components in both gyratory and cone crushers is one of the major operating costs. Wear monitoring is possible using a Faro Arm (Figure 6.10), which is a portable coordinate measurement machine. Ultrasonic profiling is also used. A more advanced system using a laser scanner tool to profile the mantle and concave produces a 3D image of the crushing chamber (Erikson, 2014). Some of the benefits of the liner profiling systems include: improved prediction of mantle and concave liner replacement; identifying asymmetric and high wear areas; measurement of open and closed side settings; and quantifying wear life with competing liner alloys.

In Chapter4, we have already seen the mechanism of crushing in a jaw crusher. Considering it further we can see that when a single particle, marked 1 in Figure11.5a, is nipped between the jaws of a jaw crusher the particle breaks producing fragments, marked 2 and 3 in Figure11.5b. Particles marked 2 are larger than the open set on the crusher and are retained for crushing on the next cycle. Particles of size 3, smaller than the open set of the crusher, can travel down faster and occupy or pass through the lower portion of the crusher while the jaw swings away. In the next cycle the probability of the larger particles (size 2) breaking is greater than the smaller sized particle 3. In the following cycle, therefore, particle size 2 is likely to disappear preferentially and the progeny joins the rest of thesmaller size particles indicated as 3 in Figure11.5c. In the figures, the position of the crushed particles that do not exist after comminution is shaded white (merely to indicate the positions they had occupied before comminution). Particles that have been crushed and travelled down are shown in grey. The figure clearly illustrates the mechanism of crushing and the classification that takes place within the breaking zone during the process, as also illustrated in Figure11.4. This type of breakage process occurs within a jaw crusher, gyratory crusher, roll crusher and rod mills. Equation (11.19) then is a description of the crusher model.

In practice however, instead of a single particle, the feed consists of a combination of particles present in several size fractions. The probability of breakage of some relatively larger sized particles in preference to smaller particles has already been mentioned. For completeness, the curve for the probability of breakage of different particle sizes is again shown in Figure11.6. It can be seen that for particle sizes ranging between 0 K1, the probability of breakage is zero as the particles are too small. Sizes between K1 and K2 are assumed to break according a parabolic curve. Particle sizes greater than K2 would always be broken. According to Whiten [16], this classification function Ci, representing the probability of a particle of size di entering the breakage stage of the crusher, may be expressed as

The classification function can be readily expressed as a lower triangular matrix [1,16] where the elements represent the proportion of particles in each size interval that would break. To construct a mathematical model to relate product and feed sizes where the crusher feed contains a proportion of particles which are smaller than the closed set and hence will pass through the crusher with little or no breakage, Whiten [16] advocated a crusher model as shown in Figure11.7.

The considerations in Figure11.7 are similar to the general model for size reduction illustrated in Figure11.4 except in this case the feed is initially directed to a classifier, which eliminates particle sizes less than K1. The coarse classifier product then enters the crushing zone. Thus, only the crushable larger size material enters the crusher zone. The crusher product iscombined with the main feed and the process repeated. The undersize from the classifier is the product.

While considering the above aspects of a model of crushers, it is important to remember that the size reduction process in commercial operations is continuous over long periods of time. In actual practice, therefore, the same operation is repeated over long periods, so the general expression for product size must take this factor into account. Hence, a parameter v is introduced to represent the number of cycles of operation. As all cycles are assumed identical the general model given in Equation (11.31) should, therefore, be modified as

Multiple vectors B C written in matrix form:BC=0.580000.200.60000.120.180.6100.040.090.20.571.000000.700000.4500000=0581+00+00+000.580+00.7+00+000580+00+00.45+000.580+00+00+000.21+0.60+00+000.20+0.60.7+00+000.20+0.60+00.45+000.20+0.60+00+000.121+0.180+0.610+000.120+0.180.7+0.610+000.120+0.180+0.610.45+000.120+0.180+0.610+000.041+0.090+0.20+0.5700.040+0.090.7+0.20+0.5700.040+0.090+0.20.45+0.5700.040+0.090+0.20+0.570=0.580000.20.42000.120.1260.274500.040.0630.090

Now determine (I B C) and (I C)(IBC)=10.5800000000.210.42000000.1200.12610.27450000.0400.06300.0910=0.420000.20.58000.120.1260.725500.040.0630.091and(IC)=000000.300000.5500001

Now find the values of x1, x2, x3 and x4 as(0.42x1)+(0x2)+(0x3)+(0x4)=10,thereforex1=23.8(0.2x1)+(0.58x2)+(0x3)+(0x4)=33,thereforex2=65.1(0.12x1)+(0.126x2)+(0.7255x3)+(0x4)=32,thereforex3=59.4(0.04x1)+(0.063x2)+(0.09x3)+(1x4)=20,thereforex4=30.4

In this process, mined quartz is crushed into pieces using crushing/smashing equipment. Generally, the quartz smashing plant comprises a jaw smasher, a cone crusher, an impact smasher, a vibrating feeder, a vibrating screen, and a belt conveyor. The vibrating feeder feeds materials to the jaw crusher for essential crushing. At that point, the yielding material from the jaw crusher is moved to a cone crusher for optional crushing, and afterward to effect for the third time crushing. As part of next process, the squashed quartz is moved to a vibrating screen for sieving to various sizes.

Crushers are widely used as a primary stage to produce the particulate product finer than about 50100mm. They are classified as jaw, gyratory, and cone crushers based on compression, cutter mill based on shear, and hammer crusher based on impact.

A jaw crusher consists essentially of two crushing plates, inclined to each other forming a horizontal opening by their lower borders. Material is crushed between a fixed and a movable plate by reciprocating pressure until the crushed product becomes small enough to pass through the gap between the crushing plates. Jaw crushers find a wide application for brittle materials. For example, they are used for comminution of porous copper cake. A Fritsch jaw crusher with maximal feed size 95mm, final fineness (depends on gap setting) 0.315mm, and maximal continuous throughput 250Kg/h is shown in Fig. 2.8.

A gyratory crusher includes a solid cone set on a revolving shaft and placed within a hollow body, which has conical or vertical sloping sides. Material is crushed when the crushing surfaces approach each other and the crushed products fall through the discharging opening.

Hammer crushers are used either as a one-step primary crusher or as a secondary crusher for products from a primary crusher. They are widely used for crushing hard metal scrap for different hard metal recycling processes. Pivoted hammers are pendulous, mounted on the horizontal axes symmetrically located along the perimeter of a rotor. Crushing takes place by the impact of material pieces with the high speed moving hammers and by contact with breaker plates. A cylindrical grating or screen is placed beneath the rotor. Materials are reduced to a size small enough to pass through the openings of the grating or screen. The size of the product can be regulated by changing the spacing of the grate bars or the opening of the screen.

The feature of the hammer crushers is the appearance of elevated pressure of air in the discharging unit of the crusher and underpressure in the zone around the shaft close to the inside surface of the body side walls. Thus, the hammer crushers also act as high-pressure, forced-draught fans. This may lead to environmental pollution and product losses in fine powder fractions. A design for a hammer crusher (Fig. 2.9) essentially allows a decrease of the elevated pressure of air in the crusher discharging unit [5]. The A-zone beneath the screen is communicated through the hollow ribs and openings in the body side walls with the B-zone around the shaft close to the inside surface of body side walls. As a result, the circulation of suspended matter in the gas between A and B zones is established and the high pressure of air in the discharging unit of crusher is reduced.

Crushers are widely used as a primary stage to produce the particulate product finer than about 50100 mm in size. They are classified as jaw, gyratory and cone crushers based on compression, cutter mill based on shear and hammer crusher based on impact.

A jaw crusher consists essentially of two crushing plates, inclined to each other forming a horizontal opening by their lower borders. Material is crushed between a fixed and a movable plate by reciprocating pressure until the crushed product becomes small enough to pass through the gap between the crushing plates. Jaw crushers find a wide application for brittle materials. For example, they are used for comminution of porous copper cake.

A gyratory crusher includes a solid cone set on a revolving shaft and placed within a hollow body, which has conical or vertical sloping sides. Material is crushed when the crushing surfaces approach each other and the crushed products fall through the discharging opening.

Hammer crushers are used either as a one-step primary crusher or as a secondary crusher for products from a primary crusher. They are widely used for crushing of hard metal scrap for different hard metal recycling processes.

Pivoted hammers are pendulous, mounted on the horizontal axes symmetrically located along the perimeter of a rotor and crushing takes place by the impact of material pieces with the high speed moving hammers and by contact with breaker plates. A cylindrical grating or screen is placed beneath the rotor. Materials are reduced to a size small enough pass through the openings of the grating or screen. The size of product can be regulated by changing the spacing of the grate bars or the opening of the screen.

The feature of the hammer crushers is the appearance of elevated pressure of air in the discharging unit of the crusher and underpressure in the zone around of the shaft close to the inside surface of the body side walls. Thus, the hammer crushers also act as high-pressure forced-draught fans. This may lead to environmental pollution and product losses in fine powder fractions.

A design for a hammer crusher (Figure 2.6) allows essentially a decrease of the elevated pressure of air in the crusher discharging unit [5]. The A-zone beneath the screen is communicated through the hollow ribs and openings in the body side walls with the B-zone around the shaft close to the inside surface of body side walls. As a result, circulation of suspended matter in the gas between A- and B-zones is established and high pressure of air in the discharging unit of crusher is reduced.

For a particular operation where the ore size is known, it is necessary to estimate the diameter of rolls required for a specific degree of size reduction. To estimate the roll diameter, it is convenient to assume that the particle to be crushed is spherical and roll surfaces are smooth. Figure6.2 shows a spherical particle about to enter the crushing zone of a roll crusher and is about to be nipped. For rolls that have equal radius and length, tangents drawn at the point of contact of the particle and the two rolls meet to form the nip angle (2). From simple geometry it can be seen that for a particle of size d, nipped between two rolls of radius R:

Equation (6.2) indicates that to estimate the radius R of the roll, the nip angle is required. The nip angle on its part will depend on the coefficient of friction, , between the roll surface and the particle surface. To estimate the coefficient of friction, consider a compressive force, F, exerted by the rolls on the particle just prior to crushing, operating normal to the roll surface, at the point of contact, and the frictional force between the roll and particle acting along a tangent to the roll surface at the point of contact. The frictional force is a function of the compressive force F and is given by the expression, F. If we consider the vertical components of these forces, and neglect the force due to gravity, then it can be seen that at the point of contact (Figure6.2) for the particle to be just nipped by the rolls, the equilibrium conditions apply where

As the friction coefficient is roughly between 0.20 and 0.30, the nip angle has a value of about 1117. However, when the rolls are in motion the friction characteristics between the ore particle will depend on the speed of the rolls. According to Wills [6], the speed is related to the kinetic coefficient of friction of the revolving rolls, K, by the relation

Equation (6.4) shows that the K values decrease slightly with increasing speed. For speed changes between 150 and 200rpm and ranging from 0.2 to 0.3, the value of K changes between 0.037 and 0.056. Equation (6.2) can be used to select the size of roll crushers for specific requirements. For nip angles between 11 and 17, Figure6.3 indicates the roll sizes calculated for different maximum feed sizes for a set of 12.5mm.

The maximum particle size of a limestone sample received from a cone crusher was 2.5cm. It was required to further crush it down to 0.5cm in a roll crusher with smooth rolls. The friction coefficient between steel and particles was 0.25, if the rolls were set at 6.3mm and both revolved to crush, estimate the diameter of the rolls.

It is generally observed that rolls can accept particles sizes larger than the calculated diameters and larger nip angles when the rate of entry of feed in crushing zone is comparable with the speed of rotation of the rolls.

Jaw crushers are mainly used as primary crushers to produce material that can be transported by belt conveyors to the next crushing stages. The crushing process takes place between a fixed jaw and a moving jaw. The moving jaw dies are mounted on a pitman that has a reciprocating motion. The jaw dies must be replaced regularly due to wear. Figure 8.1 shows two basic types of jaw crushers: single toggle and double toggle. In the single toggle jaw crusher, an eccentric shaft is installed on the top of the crusher. Shaft rotation causes, along with the toggle plate, a compressive action of the moving jaw. A double toggle crusher has, basically, two shafts and two toggle plates. The first shaft is a pivoting shaft on the top of the crusher, while the other is an eccentric shaft that drives both toggle plates. The moving jaw has a pure reciprocating motion toward the fixed jaw. The crushing force is doubled compared to single toggle crushers and it can crush very hard ores. The jaw crusher is reliable and robust and therefore quite popular in primary crushing plants. The capacity of jaw crushers is limited, so they are typically used for small or medium projects up to approximately 1600t/h. Vibrating screens are often placed ahead of the jaw crushers to remove undersize material, or scalp the feed, and thereby increase the capacity of the primary crushing operation.

Primary gyratory crushers are used in the primary crushing stage. Compared to the cone type crusher, a gyratory crusher has a crushing chamber designed to accept feed material of a relatively large size in relation to the mantle diameter. The primary gyratory crusher offers high capacity thanks to its generously dimensioned circular discharge opening (which provides a much larger area than that of the jaw crusher) and the continuous operation principle (while the reciprocating motion of the jaw crusher produces a batch crushing action). The gyratory crusher has capacities starting from 1200 to above 5000t/h. To have a feed opening corresponding to that of a jaw crusher, the primary gyratory crusher must be much taller and heavier. Therefore, primary gyratories require quite a massive foundation.

The cone crusher is a modified gyratory crusher. The essential difference is that the shorter spindle of the cone crusher is not suspended, as in the gyratory, but is supported in a curved, universal bearing below the gyratory head or cone (Figure 8.2). Power is transmitted from the source to the countershaft to a V-belt or direct drive. The countershaft has a bevel pinion pressed and keyed to it and drives the gear on the eccentric assembly. The eccentric assembly has a tapered, offset bore and provides the means whereby the head and main shaft follow an eccentric path during each cycle of rotation. Cone crushers are used for intermediate and fine crushing after primary crushing. The key factor for the performance of a cone type secondary crusher is the profile of the crushing chamber or cavity. Therefore, there is normally a range of standard cavities available for each crusher, to allow selection of the appropriate cavity for the feed material in question.

The main task of renovation construction waste handling is the separation of lightweight impurities and construction waste. The rolling crusher with opposite rollers is capable of crushing the brittle debris and compressing the lightweight materials by the low-speed and high-pressure extrusion of the two opposite rollers. As the gap between the opposite rollers, rotation speed, and pressure are all adjustable, materials of different scales in renovation construction waste can be handled.

The concrete C&D waste recycling process of impact crusher+cone crusher+hoop-roller grinder is also capable of handling brick waste. In general, the secondary crushing using the cone crusher in this process with an enclosed crusher is a process of multicrushing, and the water content of waste will become an important affecting factor. The wet waste will be adhered on the wall of the grinding chamber, and the crushing efficiency and waste discharging will be affected. When the climate is humid, only coarse impact crushing is performed and in this case the crushed materials are used for roadbase materials. Otherwise, three consecutive crushings are performed and the recycled coarse aggregate, fine aggregate, and powder materials are collected, respectively.

The brick and concrete C&D waste recycling process of impact crusher+rolling crusher+hoop-roller grinder is also capable of handling the concrete waste. In this case, the water content of waste will not be an important affecting factor. This process is suitable in the regions with wet climates.

The renovation C&D waste recycling process of rolling crusher (coarse/primary crushing)+rolling crusher (intermediate/secondary crushing)+rolling crusher (fine/tertiary crushing) is also capable of handling the two kinds of waste discussed earlier. The particle size of debris is crushed less than 20mm and the lightweight materials are compressed, and they are separated using the drum sieve. The energy consumption is low in this process; however, the shape of products is not good (usually flat and with cracks). There is no problem in roadbase material and raw materials of prefabricated product production. But molders (the rotation of rotors in crusher is used to polish the edge and corner) should be used for premixed concrete and mortar production.

Related Equipments