cordoba high quality medium copper mine ceramic ball mill sell at a loss

grinding balls & rods

grinding balls & rods

General statements can be made and are worthy of consideration when selecting grinding media. For the best results it has been found that the smallest diameter ball or rod which will break down the particular material to be ground is desirable since greatest surface area is obtained. From the standpoint of economy, the larger the media the higher will be the liner consumption and media consumption. The minimum size of grinding balls should be selected with caution since there will be a tendency for such balls to float out of the mill in a dense pulp (this is minimised by the use of a grate discharge mill). Also the smaller the media the quicker it will reach its reject size.

For the first stage of grinding, media will generally be in the 4 to 2 size (in some cases as high as 5). In secondary finer grinding the initial charge will begin at around 3 and in the case of balls will grade down to about . Extremely fine grinding will dictate the use of 1 and smaller balls.

Grinding media is the working part of a mill. It will consume power whether it is doing grinding work or not. The amount of work which it does depends upon its size, its material, its construction and the quantity involved. It is, therefore, advantageous to select the type of grinding media which will prove most economical, the size of media which will give the best grinding results, and the quantity of media which will just produce the grind required.

One of the economic factors of grinding is the wear of the grinding media. This is dependent upon the material used in its manufacture, method of manufacture, size of media, diameter of mill, speed of mill, pulp level maintained in the mill, rate of feed, density of pulp maintained, shape of the liner surface, nature of the feed, and the problem of corrosion.

Many shapes of grinding media have been tried over the past years, but essentially there are only two efficient types of media used. These are the spherical ball and the cylindrical rod. Other shapes are relatively expensive to manufacture and they have shown no appreciable improvement in grinding characteristics.

It will be found that a seasoned charge will provide a better grind than a new mill charge. This, of course, is impossible to determine at the offset, but after continuous operation the media charge should be checked for size and weight, and maintained at that optimum point. After the charge has been selected, replacement media should be made at the maximum size used. In some cases it has been found advantageous to add replacement media of two or more sizes, so as to maintain more closely the seasoned ratio.

As a general figure rod mills will have a void space within the charge of around 20% to 22% for new rods. In ball mills the theoretical void space is around 42% to 43%. It has been found that as grinding rods wear a 4 or 4 rod will generally break up at about 1 diameter. The smaller diameter new rods do not break up as easily and will generally wear down to about 1. In many applications it has been found, that grinding efficiency will increase if rods are removed when they reach the 1 size, and also if broken pieces of rods are removed. The Open End Rod Mill has the advantage of allowing the quick and easy removal of such rods.

It is difficult to give figures on media consumption since there are so many variables. Rods will be consumed at the rate of 0.2# per ton on soft easily ground material up to 2# per ton on harder material. Steel consumption of balls is spread out over an even greater range. Some indication as to media consumption can be obtained from power consumed in grinding. For example, balls or rods will generally wear at a rate of about 1# for each 6 or 7 kilowatt hours consumed per ton of ore. Liner consumption is generally about one-fifth of the media consumption.

We areprepared to furnish alltypes and sizes of steel rods as shown in table. Standard sizes of these rods are finest quality, high carbon, hot rolled, machine straightened steel and meet low cost, long wear requirements for use in operation of all types of rod mills.

Steel Grinding Rods are made of a special steel which breaks up without twisting when final wear occurs. This is extremely important in maintaining full grinding capacity and eliminating the difficulty of removing wire-like, worn rods which twist and bend into an inseparable and space filling mass of interlaced wires if breaking does not occur. Rods are shipped in lengths cut to suit the length of each particular customers rod mill.

Rods are to be hot rolled, hot sawed or sheared, with standard tolerance and machine straightened. We have found that a good grade of forged steel grinding balls is generally most efficient for use with our grate discharge ball mills.

Steel balls ranging from to 5 in. in diameter are used. Rods range from 1 to 4 in. in diameter and should be 3 to 4 in. shorter than the inside mill length. Tube mills are usually fed balls smaller than 2 in., whereas 4- or 5-in. balls are more commonly used for ball-mill grinding. A much higher grinding capacity is obtained in tube mills by using steel media instead of pebbles, but in making such a conversion serious consideration must be given to the ability of the steel shell to withstand the greater loading.

Approximate ball loads can be estimated by assuming 300 lb. per cu. ft. of ball volume and a total load equivalent to 40 to 45 per cent of the mill volume. Rod loads average about 40 per cent of mill volume, and a figure of 400 to 425 lb. per cu. ft. of rod volume should be taken.

Experience indicates that rods are superior to balls for feeds in the range from to 1 in. maximum when the mill is not called upon to finish at sizes finer than 14 mesh. Balls are superior at coarser feed sizes or for finishing 1-in. feeds to 28 mesh of grind or finer because the mill can be run cataracting and the large lumps broken by hammering.

In an operating mill a seasoned charge, containing media of all sizes from that of the renewal or replacement size down to that which discharges automatic ally, normally produces better grinding than a new charge. It is inferred from this that a charge should be rationed to the mill feed, i.e., that it should contain media of sizes best suited to each of the particle sizes to be ground. Usual practice is, however, to charge a new mill with a range of sizes, based on an assumed seasoned load; thereupon to make periodic renewals, at various sizes dependent upon the character of the circulating load, until optimum grinding is obtained; and thereafter to make required renewals at the optimum size.

A coarse feed requires larger (grinding) media than a finer feed. The smaller the mesh of grind the smaller the optimum diameter of the medium. This relationship is attributed to the fact that fine product is produced most effectively by rubbing, whence maximum capacity to fine sizes is attained by maximum rubbing surface, i.e., with small balls. A practical limitation is imposed by the tendency for balls that are too small to float* out of the mill and by the high percentage of rejects when renewals are too small.

The usual materials for balls are chilled cast iron and forged steel, for rods, high- carbon steel, (0.8 to 1.0 per cent carbon) all more or less alloyed. Mild steel rods are unsuitable for the reason that they bend and kink after wearing down to a certain minimum diameter and snarl up the whole rod load. The hardened steel rods break up when they wear down and are removed at about 1 in. or left in an eventually discharge in small pieces.

If you know the price of a 3 grinding ball or what the cost of a 75mm piece of grinding ballis, you can estimate, in a relative way, the price of larger and smaller grinding media. It will serve you well when creating an operating budget.

These balls are cast alloy steel, and are made by the newly developed Payne Hot Top principle. This principle employs a rotating casting machine. This machine rotates and the molds move under the pouring spout and hot metal runs down a trough on top of the molds. Four or five molds are either filling or cooling under this stream of hot steel. By this means the heads are kept liquid, eliminating the need for risers and allowing all of the gasses to escape. For this reason the balls are solid, free from gas cavities, and show wear resistance equal to the best forged steel balls. These balls may be had in two types: a soft ball Brinnell 450+ for large diameter ball mills, and a hard ball Brinnell 600+ for small ball mills. The addition of molybdenum, chromium and manganese provides an excellent microstructure for these grinding balls. Balls are available in 4, 3, 3, 2, and 2 sizes.

used ball mills | ball mills for sale | phoenix equipment

used ball mills | ball mills for sale | phoenix equipment

Why buy a brand new ball mill when we have high-quality used and refurbished ball mills for sale? Well-made industrial equipment from top manufacturers maintain their value and save your company or industry substantially.

Ball mills are a fundamental part of the manufacturing industry in the USA as well as around the world. Ball mills crush material into various sizes and extract resources from mined materials. Pebble mills are a type of ball mill and are also used to reduce the size of hard materials, down to 1 micron or less.

Because of their fairly simple design, ball mills and pebble mills are less likely to need costly repairs (unlike other crushing or extraction equipment) making them an attractive option for businesses on a budget.

Unused 24 x 41 Polysius EGL Ball Mill. Steel Lined. Twin 7MW Electric Motor Drives, 14MW/11kV Power Supply Unit. Twin Combiflex Fixed Speed Gear Drive. Auxiliary Drive Motors, Lubrication Unit Fixed Bearing and Lubrication Unit Floating Bearing, Frozen Charge Protection System, Vibration Sensors for COMBIFLEX, Dam Ring, Permanent installed Centrifuge for Fixed Bearing, Closed Circuit Chiller Unit, Insurance and Commissioning Spares, Special Tools. Qty 2 Available.

Used 11.5' diameter X 17' long ball mill. Manufactured by KVS (Kennedy Van Saun). 1000 HP open winding synchronous motor. Features trommel discharge and feed tank. Refurbished in 2013, which included installation of new oil jacking system, oil lube system for Babbitt bearings, new titanium steel water jet-machined discharge grates, and motor refurbishment. Set of new babbit bearings available. Previously operated as a closed circuit dry mill with grinding capacity of 40 metric tons per hour with output fineness of >80% passing 200 mesh. Motor operating speed of 15.8 RPM charged with approximately 78 tons of 1", 2" and 3" steel balls. Last used at a phosphate processing facility and in good condition.

Used 8' x 10' Epworth 200 HP jacketed steel ball mill, approximately 8' diameter x 10' long, jacketed chamber, gear and pinion driven with approximately 200 motor drive, on stands, Serial# K-0845.

Used 175HP Hosokawa Alpine Super Orion Continuous Ball mill. Model 195/495 CLKE. Alumina Oxide lined. 195 cm (76")inner diameter x 495 cm (194") long drum, periphery dry discharge with adjustable discharge openings, enclosed discharge housing, direct driven thru gearbox. 175HP 460 volt motor with VFD motor controller. Serial# C1198474. Built 2012.

Used 6' x 8' Paul Abbe jacketed 100 HP steel ball mill, approximately 6' diameter x 8' long, jacketed chamber, gear and pinion driven with approximately 100 motor drive, on stands.

Unused 5' diameter X 6' long Steel Lined Ball Mill, manufactured by Patterson Industries, Type D, non-jacketed, with AR400 steel liners. Includes 30 HP, 3 phase, 60 Hz, 230-460 V, 1725 RPM motor. Mill drive is integrally coupled to horizontal parallel shafted helical gear reducer. Continuous type, with product feeding through spiral inlet trunnion and exiting through the discharge end trunnion. Features cylinder manway access door for cleaning. Internal volume measures approximately 839 USG (112 CF). Mill shell is lined with (24) 1/4" thick liner plates, each head lined with (8) 3/8" thick pie-shaped liner plates. Mounted on stand with approximately 66" clearance between the mill cylinder and floor. Mills were intended for use in glass particle size reduction but were never installed. Manufactured in 2019, units are still in factory plastic wrap and in new condition. (Qty - 2 available)

Used 5 ft. dia. x 6 ft. (Approx 120 Cu.Ft) Patterson Pebble Mill. Alumina brick lining. On stand with 20 HP motor and gear reduced drive with brake. Bull gear and pinion. Babbit bearings. Door is polyurethane and has a drain with plug.

Used 4' x 5' (345 Gallon Total/210 Gallon Working) Ball Mill. Mfg Steveco. Steel Lining. Jacketed. 20 HP (460V/60Hz/3ph) Gear Reduced heavy duty drive on high stands. Solid door and discharge door.

Used Paul O. Abbe One Piece Ceramic Ball Mill, Model JM-300. Non-Jacketed chamber approximate 24.8" diameter x 39.5" long. Vessel volume 300 liter (79 gallons). Approximate 5" charge and discharge port with cover. Driven by a 3 HP, 3/60/208-230/460 volt 1760 rpm motor with a shaft mounted Sumitomo Model 203E-25 reducer. Approximate 32 rpm drum speed. Includes a control panel with an ABB drive. Mounted on a common carbon steel frame legs. Serial # 0830032JM. Built 2008.

Used 28 Gallon Paul O. Abbe Ceramic Jar / Ball Mill. Approximate 3.7 Cubic Feet. Approximate 20" diameter x 20" straight side. Includes motor and cage. Mounted on a carbon steel frame with safety cage.

Used 30 gallon Paul O. Abbe Jar Mill. Porcelain jar 21" diameter x 18" straight side. Driven by 1hp, 1/60/115/230 volt, 1740 rpm motor thru a reducer, ratio 9.3 to 1. Inlet & outlet with cover and clamp. Mounted on carbon steel legs with a discharge housing. Serial#84876

Used 25 Gallon Norton Chemical Process Products Jar Mill. Porcelain jar 20" diameter x 20" straight side. Driven by 1hp, 3/60/230/460 volt, 1730 rpm motor thru a reducer, no ratio. Inlet & outlet with cover and clamp. Mounted on carbon steel legs with a discharge housing. Serial# AV-83104.

Used 35.30 Gallon Paul O. Abbe Jar Mill. Model 5A Porcelain jar 22" diameter x 20" straight side. Driven by 1hp, 3/60/230/460 volt, 1745 rpm motor thru a reducer, ratio 25 to 1. Inlet & outlet with cover and clamp. Mounted on carbon steel legs with a discharge housing. Serial#A41563.

Unused 24 x 41 Polysius EGL Ball Mill. Steel Lined. Twin 7MW Electric Motor Drives, 14MW/11kV Power Supply Unit. Twin Combiflex Fixed Speed Gear Drive. Auxiliary Drive Motors, Lubrication Unit Fixed Bearing and Lubrication Unit Floating Bearing, Frozen Charge Protection System, Vibration Sensors for COMBIFLEX, Dam Ring, Permanent installed Centrifuge for Fixed Bearing, Closed Circuit Chiller Unit, Insurance and Commissioning Spares, Special Tools. Qty 2 Available.

Used 11.5' diameter X 17' long ball mill. Manufactured by KVS (Kennedy Van Saun). 1000 HP open winding synchronous motor. Features trommel discharge and feed tank. Refurbished in 2013, which included installation of new oil jacking system, oil lube system for Babbitt bearings, new titanium steel water jet-machined discharge grates, and motor refurbishment. Set of new babbit bearings available. Previously operated as a closed circuit dry mill with grinding capacity of 40 metric tons per hour with output fineness of >80% passing 200 mesh. Motor operating speed of 15.8 RPM charged with approximately 78 tons of 1", 2" and 3" steel balls. Last used at a phosphate processing facility and in good condition.

Used 8' x 10' Epworth 200 HP jacketed steel ball mill, approximately 8' diameter x 10' long, jacketed chamber, gear and pinion driven with approximately 200 motor drive, on stands, Serial# K-0845.

Used 175HP Hosokawa Alpine Super Orion Continuous Ball mill. Model 195/495 CLKE. Alumina Oxide lined. 195 cm (76")inner diameter x 495 cm (194") long drum, periphery dry discharge with adjustable discharge openings, enclosed discharge housing, direct driven thru gearbox. 175HP 460 volt motor with VFD motor controller. Serial# C1198474. Built 2012.

Used 6' x 8' Paul Abbe jacketed 100 HP steel ball mill, approximately 6' diameter x 8' long, jacketed chamber, gear and pinion driven with approximately 100 motor drive, on stands.

Unused 5' diameter X 6' long Steel Lined Ball Mill, manufactured by Patterson Industries, Type D, non-jacketed, with AR400 steel liners. Includes 30 HP, 3 phase, 60 Hz, 230-460 V, 1725 RPM motor. Mill drive is integrally coupled to horizontal parallel shafted helical gear reducer. Continuous type, with product feeding through spiral inlet trunnion and exiting through the discharge end trunnion. Features cylinder manway access door for cleaning. Internal volume measures approximately 839 USG (112 CF). Mill shell is lined with (24) 1/4" thick liner plates, each head lined with (8) 3/8" thick pie-shaped liner plates. Mounted on stand with approximately 66" clearance between the mill cylinder and floor. Mills were intended for use in glass particle size reduction but were never installed. Manufactured in 2019, units are still in factory plastic wrap and in new condition. (Qty - 2 available)

Used 5 ft. dia. x 6 ft. (Approx 120 Cu.Ft) Patterson Pebble Mill. Alumina brick lining. On stand with 20 HP motor and gear reduced drive with brake. Bull gear and pinion. Babbit bearings. Door is polyurethane and has a drain with plug.

Used 4' x 5' (345 Gallon Total/210 Gallon Working) Ball Mill. Mfg Steveco. Steel Lining. Jacketed. 20 HP (460V/60Hz/3ph) Gear Reduced heavy duty drive on high stands. Solid door and discharge door.

Used Paul O. Abbe One Piece Ceramic Ball Mill, Model JM-300. Non-Jacketed chamber approximate 24.8" diameter x 39.5" long. Vessel volume 300 liter (79 gallons). Approximate 5" charge and discharge port with cover. Driven by a 3 HP, 3/60/208-230/460 volt 1760 rpm motor with a shaft mounted Sumitomo Model 203E-25 reducer. Approximate 32 rpm drum speed. Includes a control panel with an ABB drive. Mounted on a common carbon steel frame legs. Serial # 0830032JM. Built 2008.

Used 28 Gallon Paul O. Abbe Ceramic Jar / Ball Mill. Approximate 3.7 Cubic Feet. Approximate 20" diameter x 20" straight side. Includes motor and cage. Mounted on a carbon steel frame with safety cage.

Used 30 gallon Paul O. Abbe Jar Mill. Porcelain jar 21" diameter x 18" straight side. Driven by 1hp, 1/60/115/230 volt, 1740 rpm motor thru a reducer, ratio 9.3 to 1. Inlet & outlet with cover and clamp. Mounted on carbon steel legs with a discharge housing. Serial#84876

Used 25 Gallon Norton Chemical Process Products Jar Mill. Porcelain jar 20" diameter x 20" straight side. Driven by 1hp, 3/60/230/460 volt, 1730 rpm motor thru a reducer, no ratio. Inlet & outlet with cover and clamp. Mounted on carbon steel legs with a discharge housing. Serial# AV-83104.

Used 35.30 Gallon Paul O. Abbe Jar Mill. Model 5A Porcelain jar 22" diameter x 20" straight side. Driven by 1hp, 3/60/230/460 volt, 1745 rpm motor thru a reducer, ratio 25 to 1. Inlet & outlet with cover and clamp. Mounted on carbon steel legs with a discharge housing. Serial#A41563.

Phoenix Equipment is a global supplier of used ball mills. We have new, used and reconditioned ball mills from leading manufacturers, including: Paul O. Abbe Retsch Epworth Patterson Netzsch Newell Dunford Marcy Denver FL Smidth Nordberg Allis Chalmers Metso Hardinge Kurimoto Iron Works Kobe-Allis Chalmers Stevenson Fuller-Traylor Steveco Western Machinery Marion Machine Makrum and more. Ball mills are used in a wide-range of industrial applications: cement processing, paint dyes and pigmentation processing, coal and ore processing, chemical processing and pyrotechnics, and many others. Ball milling has several key advantages over other systems: cost of the grinding medium and installation is generally low works for batch or continuous operation (as well as closed-circuit grinding) suitable for a wide range of materials simple design ensures less repairs Whether you are in the market for a used ball mill for your business or you have a pre-owned ball mill youd like to sell, USA-based Phoenix Equipment can help. Contact us today to learn more about what Phoenix can do for you. Related equipment: Agitators, Screen/Separators, Kilns and Calciners, Scales and Extruders. Fill out our quick and easy quote form for more information about our Ball Mills inventory.

Ball mills are used in a wide-range of industrial applications: cement processing, paint dyes and pigmentation processing, coal and ore processing, chemical processing and pyrotechnics, and many others.

Whether you are in the market for a used ball mill for your business or you have a pre-owned ball mill youd like to sell, USA-based Phoenix Equipment can help. Contact us today to learn more about what Phoenix can do for you.

Phoenix Equipment buys and sells used chemical process equipment and plants for relocation. Our industry focus includes process plants and machinery in the chemical, petrochemical, fertilizer, refining, gas processing, power generation, pharmaceutical and food manufacturing industries. We have extensive experience acquiring processing plants and process lines that require the execution of complex dismantlement, demolition and decommissioning projects. Based in Red Bank, New Jersey, USA, we have team members located in China, India, Germany and relationships throughout the world.

Why Use Phoenix for Your Plant Dismantling & Plant Relocation Needs A Common Plant Liquidation Scenario Your company has made the tough decision to close a plant. This plant was running for years, and the company paid a lot to have it built, paid everyones salaries, and maintained or even modernized all of the production assets over the plants life but the plant needs to be sold off for one reason or another. Your company has called upon you to recover as much dollar as you can to help keep the organization alive, and better yet, healthy, in what is a constant battle in the marketplace. Youve either: Have spent months, maybe even years trying to find a buyer that would operate the plant in place, without any success, while the plants assets lose value every passing day. Or, you cant sell it to another company, as you are one of the few suppliers of the product the plant makes, and you dont want to create a competitor, or improve a competitors position. Or, the plant is on leased propert

Hydrogenation: Major Applications Hydrogenation is a billion-dollar industry. Hydrogenating means to add hydrogen to something. According to Haldor Topsoe, hydrogenation comprises 48% of total hydrogen consumption, 44% of which is for hydrocracking and hydrotreating in refineries , and 4% for hydrogenation of unsaturated hydrocarbons (including hardening of edible oil) and of aromatics, hydrogenation of aldehydes and ketones (for instance oxo-products), and hydrogenation of nitrobezene (for manufacture of aniline). Hydrocracking & Hydrotreating Industrially, hydrotreating and hydrocracking are performed in down flow trickle bed reactors, where the gas and the liquid feed are sent concurrently through a fixed bed plug flow reactor. Although the flow pattern in the reactor can be reasonably approximated, the observed kinetics in such a trickle bed reactor are quite often affected by minor unplanned oscillations in the flow. How the gas and liquid collide and mix together affects the end prod

Thermoplastics A Focus on Polyethylene & Polypropylene Thermoplastics are a class of polymers, that with the application of heat, can be softened and melted, and can be processed either in the heat-softened state (e.g. by thermoforming) or in the liquid state (e.g. by extrusion and injection molding). Over 70% of the plastics used in the world are thermoplastics, and the two most commonly used thermoplastics are both olefins, compound made up of hydrogen and carbon that contains one or more pairs of carbon atoms linked by a double bond. These two olefins are polyethylene and polypropylene. Polyethylene Polyethylene is a tough, light, flexible synthetic resin made by polymerizing ethylene, chiefly used for plastic bags, food containers, and other packaging. It may be of low density or high density depending upon the process used in its manufacturing. It is resistant to moisture and most of the chemicals. It can be heat sealed and is flexible at room temperature (and low temperature), and in additional to its material properties,

Related Equipments