describe ball mill

ball milling - an overview | sciencedirect topics

ball milling - an overview | sciencedirect topics

Ball milling is often used not only for grinding powders but also for oxides or nanocomposite synthesis and/or structure/phase composition optimization [14,41]. Mechanical activation by ball milling is known to increase the material reactivity and uniformity of spatial distribution of elements [63]. Thus, postsynthesis processing of the materials by ball milling can help with the problem of minor admixture forming during cooling under air after high-temperature sintering due to phase instability.

Ball milling technique, using mechanical alloying and mechanical milling approaches were proposed to the word wide in the 8th decade of the last century for preparing a wide spectrum of powder materials and their alloys. In fact, ball milling process is not new and dates back to more than 150 years. It has been used in size comminutions of ore, mineral dressing, preparing talc powders and many other applications. It might be interesting for us to have a look at the history and development of ball milling and the corresponding products. The photo shows the STEM-BF image of a Cu-based alloy nanoparticle prepared by mechanical alloying (After El-Eskandarany, unpublished work, 2014).

Ball milling, a shear-force dominant process where the particle size goes on reducing by impact and attrition mainly consists of metallic balls (generally Zirconia (ZrO2) or steel balls), acting as grinding media and rotating shell to create centrifugal force. In this process, graphite (precursor) was breakdown by randomly striking with grinding media in the rotating shell to create shear and compression force which helps to overcome the weak Vander Waal's interaction between the graphite layers and results in their splintering. Fig. 4A schematic illustrates ball milling process for graphene preparation. Initially, because of large size of graphite, compressive force dominates and as the graphite gets fragmented, shear force cleaves graphite to produce graphene. However, excessive compression force may damage the crystalline properties of graphene and hence needs to be minimized by controlling the milling parameters e.g. milling duration, milling revolution per minute (rpm), ball-to-graphite/powder ratio (B/P), initial graphite weight, ball diameter. High quality graphene can be achieved under low milling speed; though it will increase the processing time which is highly undesirable for large scale production.

Fig. 4. (A) Schematic illustration of graphene preparation via ball milling. SEM images of bulk graphite (B), GSs/E-H (C) GSs/K (D); (E) and (F) are the respective TEM images; (G) Raman spectra of bulk graphite versus GSs exfoliated via wet milling in E-H and K.

Milling of graphite layers can be instigated in two states: (i) dry ball milling (DBM) and (ii) wet ball milling (WBM). WBM process requires surfactant/solvent such as N,N Dimethylformamide (DMF) [22], N-methylpyrrolidone (NMP) [26], deionized (DI) water [27], potassium acetate [28], 2-ethylhexanol (E-H) [29] and kerosene (K) [29] etc. and is comparatively simpler as compared with DBM. Fig. 4BD show the scanning electron microscopy (SEM) images of bulk graphite, graphene sheets (GSs) prepared in E-H (GSs/E-H) and K (GSs/K), respectively; the corresponding transmission electron microscopy (TEM) images and the Raman spectra are shown in Fig. 4EG, respectively [29].

Compared to this, DBM requires several milling agents e.g. sodium chloride (NaCl) [30], Melamine (Na2SO4) [31,32] etc., along with the metal balls to reduce the stress induced in graphite microstructures, and hence require additional purification for exfoliant's removal. Na2SO4 can be easily washed away by hot water [19] while ammonia-borane (NH3BH3), another exfoliant used to weaken the Vander Waal's bonding between graphite layers can be using ethanol [33]. Table 1 list few ball milling processes carried out using various milling agent (in case of DBM) and solvents (WBM) under different milling conditions.

Ball milling of graphite with appropriate stabilizers is another mode of exfoliation in liquid phase.21 Graphite is ground under high sheer rates with millimeter-sized metal balls causing exfoliation to graphene (Fig. 2.5), under wet or dry conditions. For instance, this method can be employed to produce nearly 50g of graphene in the absence of any oxidant.22 Graphite (50g) was ground in the ball mill with oxalic acid (20g) in this method for 20 hours, but, the separation of unexfoliated fraction was not discussed.22 Similarly, solvent-free graphite exfoliations were carried out under dry milling conditions using KOH,23 ammonia borane,24 and so on. The list of graphite exfoliations performed using ball milling is given in Table 2.2. However, the metallic impurities from the machinery used for ball milling are a major disadvantage of this method for certain applications.25

Reactive ball-milling (RBM) technique has been considered as a powerful tool for fabrication of metallic nitrides and hydrides via room temperature ball milling. The flowchart shows the mechanism of gas-solid reaction through RBM that was proposed by El-Eskandarany. In his model, the starting metallic powders are subjected to dramatic shear and impact forces that are generated by the ball-milling media. The powders are, therefore, disintegrated into smaller particles, and very clean or fresh oxygen-free active surfaces of the powders are created. The reactive milling atmosphere (nitrogen or hydrogen gases) was gettered and absorbed completely by the first atomically clean surfaces of the metallic ball-milled powders to react in a same manner as a gas-solid reaction owing to the mechanically induced reactive milling.

Ball milling is a grinding method that grinds nanotubes into extremely fine powders. During the ball milling process, the collision between the tiny rigid balls in a concealed container will generate localized high pressure. Usually, ceramic, flint pebbles and stainless steel are used.25 In order to further improve the quality of dispersion and introduce functional groups onto the nanotube surface, selected chemicals can be included in the container during the process. The factors that affect the quality of dispersion include the milling time, rotational speed, size of balls and balls/ nanotube amount ratio. Under certain processing conditions, the particles can be ground to as small as 100nm. This process has been employed to transform carbon nanotubes into smaller nanoparticles, to generate highly curved or closed shell carbon nanostructures from graphite, to enhance the saturation of lithium composition in SWCNTs, to modify the morphologies of cup-stacked carbon nanotubes and to generate different carbon nanoparticles from graphitic carbon for hydrogen storage application.25 Even though ball milling is easy to operate and suitable for powder polymers or monomers, process-induced damage on the nanotubes can occur.

Ball milling is a way to exfoliate graphite using lateral force, as opposed to the Scotch Tape or sonication that mainly use normal force. Ball mills, like the three roll machine, are a common occurrence in industry, for the production of fine particles. During the ball milling process, there are two factors that contribute to the exfoliation. The main factor contributing is the shear force applied by the balls. Using only shear force, one can produce large graphene flakes. The secondary factor is the collisions that occur during milling. Harsh collisions can break these large flakes and can potentially disrupt the crystal structure resulting in a more amorphous mass. So in order to create good-quality, high-area graphene, the collisions have to be minimized.

The ball-milling process is common in grinding machines as well as in reactors where various functional materials can be created by mechanochemical synthesis. A simple milling process reduces both CO2 generation and energy consumption during materials production. Herein a novel mechanochemical approach 1-3) to produce sophisticated carbon nanomaterials is reported. It is demonstrated that unique carbon nanostructures including carbon nanotubes and carbon onions are synthesized by high-speed ball-milling of steel balls. It is considered that the gas-phase reaction takes place around the surface of steel balls under local high temperatures induced by the collision-friction energy in ball-milling process, which results in phase separated unique carbon nanomaterials.

Conventional ball milling is a traditional powder-processing technique, which is mainly used for reducing particle sizes and for the mixing of different materials. The technique is widely used in mineral, pharmaceutical, and ceramic industries, as well as scientific laboratories. The HEBM technique discussed in this chapter is a new technique developed initially for producing new metastable materials, which cannot be produced using thermal equilibrium processes, and thus is very different from conventional ball milling technique. HEBM was first reported by Benjamin [38] in the 1960s. So far, a large range of new materials has been synthesized using HEBM. For example, oxide-dispersion-strengthened alloys are synthesized using a powerful high-energy ball mill (attritor) because conventional ball mills could not provide sufficient grinding energy [38]. Intensive research in the synthesis of new metastable materials by HEBM was stimulated by the pioneering work in the amorphization of the Ni-Nb alloys conducted by Kock et al. in 1983 [39]. Since then, a wide spectrum of metastable materials has been produced, including nanocrystalline [40], nanocomposite [41], nanoporous phases [42], supersaturated solid solutions [43], and amorphous alloys [44]. These new phase transformations induced by HEBM are generally referred as mechanical alloying (MA). At the same time, it was found that at room temperature, HEBM can activate chemical reactions which are normally only possible at high temperatures [45]. This is called reactive milling or mechano-chemistry. Reactive ball milling has produced a large range of nanosized oxides [46], nitrides [47], hydrides [48], and carbide [49] particles.

The major differences between conventional ball milling and the HEBM are listed in the Table 1. The impact energy of HEBM is typically 1000 times higher than the conventional ball milling energy. The dominant events in the conventional ball milling are particle fracturing and size reductions, which correspond to, actually, only the first stage of the HEBM. A longer milling time is therefore generally required for HEBM. In addition to milling energy, the controls of milling atmosphere and temperature are crucial in order to create the desired structural changes or chemical reactions. This table shows that HEBM can cover most work normally performed by conventional ball milling, however, conventional ball milling equipment cannot be used to conduct any HEBM work.

Different types of high-energy ball mills have been developed, including the Spex vibrating mill, planetary ball mill, high-energy rotating mill, and attritors [50]. In the nanotube synthesis, two types of HEBM mills have been used: a vibrating ball mill and a rotating ball mill. The vibrating-frame grinder (Pulverisette O, Fritsch) is shown in Fig. 1a. This mill uses only one large ball (diameter of 50 mm) and the media of the ball and vial can be stainless steel or ceramic tungsten carbide (WC). The milling chamber, as illustrated in Fig. 1b, is sealed with an O-ring so that the atmosphere can be changed via a valve. The pressure is monitored with an attached gauge during milling.

where Mb is the mass of the milling ball, Vmax the maximum velocity of the vial,/the impact frequency, and Mp the mass of powder. The milling intensity is a very important parameter to MA and reactive ball milling. For example, a full amorphization of a crystalline NiZr alloy can only be achieved with a milling intensity above an intensity threshold of 510 ms2 [52]. The amorphization process during ball milling can be seen from the images of transmission electron microscopy (TEM) in Fig. 2a, which were taken from samples milled for different lengths of time. The TEM images show that the size and number of NiZr crystals decrease with increasing milling time, and a full amorphization is achieved after milling for 165 h. The corresponding diffraction patterns in Fig. 2b confirm this gradual amorphization process. However, when milling below the intensity threshold, a mixture of nanocrystalline and amorphous phases is produced. This intensity threshold depends on milling temperature and alloy composition [52].

Figure 2. (a) Dark-field TEM image of Ni10Zr7 alloy milled for 0.5, 23, 73, and 165 h in the vibrating ball mill with a milling intensity of 940 ms2. (b) Corresponding electron diffraction patterns [52].

Fig. 3 shows a rotating steel mill and a schematic representation of milling action inside the milling chamber. The mill has a rotating horizontal cell loaded with several hardened steel balls. As the cell rotates, the balls drop onto the powder that is being ground. An external magnet is placed close to the cell to increase milling energy [53]. Different milling actions and intensities can be realized by adjusting the cell rotation rate and magnet position.

The atmosphere inside the chamber can be controlled, and adequate gas has to be selected for different milling experiments. For example, during the ball milling of pure Zr powder in the atmosphere of ammonia (NH3), a series of chemical reactions occur between Zr and NH3 [54,55]. The X-ray diffraction (XRD) patterns in Fig. 4 show the following reaction sequence as a function of milling time:

The mechanism of a HEBM process is quite complicated. During the HEBM, material particles are repeatedly flattened, fractured, and welded. Every time two steel balls collide or one ball hits the chamber wall, they trap some particles between their surfaces. Such high-energy impacts severely deform the particles and create atomically fresh, new surfaces, as well as a high density of dislocations and other structural defects [44]. A high defect density induced by HEBM can accelerate the diffusion process [56]. Alternatively, the deformation and fracturing of particles causes continuous size reduction and can lead to reduction in diffusion distances. This can at least reduce the reaction temperatures significantly, even if the reactions do not occur at room temperature [57,58]. Since newly created surfaces are most often very reactive and readily oxidize in air, the HEBM has to be conducted in an inert atmosphere. It is now recognized that the HEBM, along with other non-equilibrium techniques such as rapid quenching, irradiation/ion-implantation, plasma processing, and gas deposition, can produce a series of metastable and nanostructured materials, which are usually difficult to prepare using melting or conventional powder metallurgy methods [59,60]. In the next section, detailed structural and morphological changes of graphite during HEBM will be presented.

Ball milling and ultrasonication were used to reduce the particle size and distribution. During ball milling the weight (grams) ratio of balls-to-clay particles was 100:2.5 and the milling operation was run for 24 hours. The effect of different types of balls on particle size reduction and narrowing particle size distribution was studied. The milled particles were dispersed in xylene to disaggregate the clumps. Again, ultrasonication was done on milled samples in xylene. An investigation on the amplitude (80% and 90%), pulsation rate (5 s on and 5 s off, 8 s on and 4 s off) and time (15 min, 1 h and 4 h) of the ultrasonication process was done with respect to particle size distribution and the optimum conditions in our laboratory were determined. A particle size analyzer was used to characterize the nanoparticles based on the principles of laser diffraction and morphological studies.

ball mill - an overview | sciencedirect topics

ball mill - an overview | sciencedirect topics

The ball mill accepts the SAG or AG mill product. Ball mills give a controlled final grind and produce flotation feed of a uniform size. Ball mills tumble iron or steel balls with the ore. The balls are initially 510 cm diameter but gradually wear away as grinding of the ore proceeds. The feed to ball mills (dry basis) is typically 75 vol.-% ore and 25% steel.

The ball mill is operated in closed circuit with a particle-size measurement device and size-control cyclones. The cyclones send correct-size material on to flotation and direct oversize material back to the ball mill for further grinding.

Grinding elements in ball mills travel at different velocities. Therefore, collision force, direction and kinetic energy between two or more elements vary greatly within the ball charge. Frictional wear or rubbing forces act on the particles, as well as collision energy. These forces are derived from the rotational motion of the balls and movement of particles within the mill and contact zones of colliding balls.

By rotation of the mill body, due to friction between mill wall and balls, the latter rise in the direction of rotation till a helix angle does not exceed the angle of repose, whereupon, the balls roll down. Increasing of rotation rate leads to growth of the centrifugal force and the helix angle increases, correspondingly, till the component of weight strength of balls become larger than the centrifugal force. From this moment the balls are beginning to fall down, describing during falling certain parabolic curves (Figure 2.7). With the further increase of rotation rate, the centrifugal force may become so large that balls will turn together with the mill body without falling down. The critical speed n (rpm) when the balls are attached to the wall due to centrifugation:

where Dm is the mill diameter in meters. The optimum rotational speed is usually set at 6580% of the critical speed. These data are approximate and may not be valid for metal particles that tend to agglomerate by welding.

The degree of filling the mill with balls also influences productivity of the mill and milling efficiency. With excessive filling, the rising balls collide with falling ones. Generally, filling the mill by balls must not exceed 3035% of its volume.

The mill productivity also depends on many other factors: physical-chemical properties of feed material, filling of the mill by balls and their sizes, armor surface shape, speed of rotation, milling fineness and timely moving off of ground product.

where b.ap is the apparent density of the balls; l is the degree of filling of the mill by balls; n is revolutions per minute; 1, and 2 are coefficients of efficiency of electric engine and drive, respectively.

A feature of ball mills is their high specific energy consumption; a mill filled with balls, working idle, consumes approximately as much energy as at full-scale capacity, i.e. during grinding of material. Therefore, it is most disadvantageous to use a ball mill at less than full capacity.

The ball mill is a tumbling mill that uses steel balls as the grinding media. The length of the cylindrical shell is usually 11.5 times the shell diameter (Figure 8.11). The feed can be dry, with less than 3% moisture to minimize ball coating, or slurry containing 2040% water by weight. Ball mills are employed in either primary or secondary grinding applications. In primary applications, they receive their feed from crushers, and in secondary applications, they receive their feed from rod mills, AG mills, or SAG mills.

Ball mills are filled up to 40% with steel balls (with 3080mm diameter), which effectively grind the ore. The material that is to be ground fills the voids between the balls. The tumbling balls capture the particles in ball/ball or ball/liner events and load them to the point of fracture.

When hard pebbles rather than steel balls are used for the grinding media, the mills are known as pebble mills. As mentioned earlier, pebble mills are widely used in the North American taconite iron ore operations. Since the weight of pebbles per unit volume is 3555% of that of steel balls, and as the power input is directly proportional to the volume weight of the grinding medium, the power input and capacity of pebble mills are correspondingly lower. Thus, in a given grinding circuit, for a certain feed rate, a pebble mill would be much larger than a ball mill, with correspondingly a higher capital cost. However, the increase in capital cost is justified economically by a reduction in operating cost attributed to the elimination of steel grinding media.

In general, ball mills can be operated either wet or dry and are capable of producing products in the order of 100m. This represents reduction ratios of as great as 100. Very large tonnages can be ground with these ball mills because they are very effective material handling devices. Ball mills are rated by power rather than capacity. Today, the largest ball mill in operation is 8.53m diameter and 13.41m long with a corresponding motor power of 22MW (Toromocho, private communications).

Planetary ball mills. A planetary ball mill consists of at least one grinding jar, which is arranged eccentrically on a so-called sun wheel. The direction of movement of the sun wheel is opposite to that of the grinding jars according to a fixed ratio. The grinding balls in the grinding jars are subjected to superimposed rotational movements. The jars are moved around their own axis and, in the opposite direction, around the axis of the sun wheel at uniform speed and uniform rotation ratios. The result is that the superimposition of the centrifugal forces changes constantly (Coriolis motion). The grinding balls describe a semicircular movement, separate from the inside wall, and collide with the opposite surface at high impact energy. The difference in speeds produces an interaction between frictional and impact forces, which releases high dynamic energies. The interplay between these forces produces the high and very effective degree of size reduction of the planetary ball mill. Planetary ball mills are smaller than common ball mills, and are mainly used in laboratories for grinding sample material down to very small sizes.

Vibration mill. Twin- and three-tube vibrating mills are driven by an unbalanced drive. The entire filling of the grinding cylinders, which comprises the grinding media and the feed material, constantly receives impulses from the circular vibrations in the body of the mill. The grinding action itself is produced by the rotation of the grinding media in the opposite direction to the driving rotation and by continuous head-on collisions of the grinding media. The residence time of the material contained in the grinding cylinders is determined by the quantity of the flowing material. The residence time can also be influenced by using damming devices. The sample passes through the grinding cylinders in a helical curve and slides down from the inflow to the outflow. The high degree of fineness achieved is the result of this long grinding procedure. Continuous feeding is carried out by vibrating feeders, rotary valves, or conveyor screws. The product is subsequently conveyed either pneumatically or mechanically. They are basically used to homogenize food and feed.

CryoGrinder. As small samples (100 mg or <20 ml) are difficult to recover from a standard mortar and pestle, the CryoGrinder serves as an alternative. The CryoGrinder is a miniature mortar shaped as a small well and a tightly fitting pestle. The CryoGrinder is prechilled, then samples are added to the well and ground by a handheld cordless screwdriver. The homogenization and collection of the sample is highly efficient. In environmental analysis, this system is used when very small samples are available, such as small organisms or organs (brains, hepatopancreas, etc.).

The vibratory ball mill is another kind of high-energy ball mill that is used mainly for preparing amorphous alloys. The vials capacities in the vibratory mills are smaller (about 10 ml in volume) compared to the previous types of mills. In this mill, the charge of the powder and milling tools are agitated in three perpendicular directions (Fig. 1.6) at very high speed, as high as 1200 rpm.

Another type of the vibratory ball mill, which is used at the van der Waals-Zeeman Laboratory, consists of a stainless steel vial with a hardened steel bottom, and a single hardened steel ball of 6 cm in diameter (Fig. 1.7).

The mill is evacuated during milling to a pressure of 106 Torr, in order to avoid reactions with a gas atmosphere.[44] Subsequently, this mill is suitable for mechanical alloying of some special systems that are highly reactive with the surrounding atmosphere, such as rare earth elements.

A ball mill is a relatively simple apparatus in which the motion of the reactor, or of a part of it, induces a series of collisions of balls with each other and with the reactor walls (Suryanarayana, 2001). At each collision, a fraction of the powder inside the reactor is trapped between the colliding surfaces of the milling tools and submitted to a mechanical load at relatively high strain rates (Suryanarayana, 2001). This load generates a local nonhydrostatic mechanical stress at every point of contact between any pair of powder particles. The specific features of the deformation processes induced by these stresses depend on the intensity of the mechanical stresses themselves, on the details of the powder particle arrangement, that is on the topology of the contact network, and on the physical and chemical properties of powders (Martin et al., 2003; Delogu, 2008a). At the end of any given collision event, the powder that has been trapped is remixed with the powder that has not undergone this process. Correspondingly, at any instant in the mechanical processing, the whole powder charge includes fractions of powder that have undergone a different number of collisions.

The individual reactive processes at the perturbed interface between metallic elements are expected to occur on timescales that are, at most, comparable with the collision duration (Hammerberg et al., 1998; Urakaev and Boldyrev, 2000; Lund and Schuh, 2003; Delogu and Cocco, 2005a,b). Therefore, unless the ball mill is characterized by unusually high rates of powder mixing and frequency of collisions, reactive events initiated by local deformation processes at a given collision are not affected by a successive collision. Indeed, the time interval between successive collisions is significantly longer than the time period required by local structural perturbations for full relaxation (Hammerberg et al., 1998; Urakaev and Boldyrev, 2000; Lund and Schuh, 2003; Delogu and Cocco, 2005a,b).

These few considerations suffice to point out the two fundamental features of powder processing by ball milling, which in turn govern the MA processes in ball mills. First, mechanical processing by ball milling is a discrete processing method. Second, it has statistical character. All of this has important consequences for the study of the kinetics of MA processes. The fact that local deformation events are connected to individual collisions suggests that absolute time is not an appropriate reference quantity to describe mechanically induced phase transformations. Such a description should rather be made as a function of the number of collisions (Delogu et al., 2004). A satisfactory description of the MA kinetics must also account for the intrinsic statistical character of powder processing by ball milling. The amount of powder trapped in any given collision, at the end of collision is indeed substantially remixed with the other powder in the reactor. It follows that the same amount, or a fraction of it, could at least in principle be trapped again in the successive collision.

This is undoubtedly a difficult aspect to take into account in a mathematical description of MA kinetics. There are at least two extreme cases to consider. On the one hand, it could be assumed that the powder trapped in a given collision cannot be trapped in the successive one. On the other, it could be assumed that powder mixing is ideal and that the amount of powder trapped at a given collision has the same probability of being processed in the successive collision. Both these cases allow the development of a mathematical model able to describe the relationship between apparent kinetics and individual collision events. However, the latter assumption seems to be more reliable than the former one, at least for commercial mills characterized by relatively complex displacement in the reactor (Manai et al., 2001, 2004).

A further obvious condition for the successful development of a mathematical description of MA processes is the one related to the uniformity of collision regimes. More specifically, it is highly desirable that the powders trapped at impact always experience the same conditions. This requires the control of the ball dynamics inside the reactor, which can be approximately obtained by using a single milling ball and an amount of powder large enough to assure inelastic impact conditions (Manai et al., 2001, 2004; Delogu et al., 2004). In fact, the use of a single milling ball avoids impacts between balls, which have a remarkable disordering effect on the ball dynamics, whereas inelastic impact conditions permit the establishment of regular and periodic ball dynamics (Manai et al., 2001, 2004; Delogu et al., 2004).

All of the above assumptions and observations represent the basis and guidelines for the development of the mathematical model briefly outlined in the following. It has been successfully applied to the case of a Spex Mixer/ Mill mod. 8000, but the same approach can, in principle, be used for other ball mills.

The Planetary ball mills are the most popular mills used in MM, MA, and MD scientific researches for synthesizing almost all of the materials presented in Figure 1.1. In this type of mill, the milling media have considerably high energy, because milling stock and balls come off the inner wall of the vial (milling bowl or vial) and the effective centrifugal force reaches up to 20 times gravitational acceleration.

The centrifugal forces caused by the rotation of the supporting disc and autonomous turning of the vial act on the milling charge (balls and powders). Since the turning directions of the supporting disc and the vial are opposite, the centrifugal forces alternately are synchronized and opposite. Therefore, the milling media and the charged powders alternatively roll on the inner wall of the vial, and are lifted and thrown off across the bowl at high speed, as schematically presented in Figure 2.17.

However, there are some companies in the world who manufacture and sell number of planetary-type ball mills; Fritsch GmbH (www.fritsch-milling.com) and Retsch (http://www.retsch.com) are considered to be the oldest and principal companies in this area.

Fritsch produces different types of planetary ball mills with different capacities and rotation speeds. Perhaps, Fritsch Pulverisette P5 (Figure 2.18(a)) and Fritsch Pulverisette P6 (Figure 2.18(b)) are the most popular models of Fritsch planetary ball mills. A variety of vials and balls made of different materials with different capacities, starting from 80ml up to 500ml, are available for the Fritsch Pulverisette planetary ball mills; these include tempered steel, stainless steel, tungsten carbide, agate, sintered corundum, silicon nitride, and zirconium oxide. Figure 2.19 presents 80ml-tempered steel vial (a) and 500ml-agate vials (b) together with their milling media that are made of the same materials.

Figure 2.18. Photographs of Fritsch planetary-type high-energy ball mill of (a) Pulverisette P5 and (b) Pulverisette P6. The equipment is housed in the Nanotechnology Laboratory, Energy and Building Research Center (EBRC), Kuwait Institute for Scientific Research (KISR).

Figure 2.19. Photographs of the vials used for Fritsch planetary ball mills with capacity of (a) 80ml and (b) 500ml. The vials and the balls shown in (a) and (b) are made of tempered steel agate materials, respectively (Nanotechnology Laboratory, Energy and Building Research Center (EBRC), Kuwait Institute for Scientific Research (KISR)).

More recently and in year 2011, Fritsch GmbH (http://www.fritsch-milling.com) introduced a new high-speed and versatile planetary ball mill called Planetary Micro Mill PULVERISETTE 7 (Figure 2.20). The company claims this new ball mill will be helpful to enable extreme high-energy ball milling at rotational speed reaching to 1,100rpm. This allows the new mill to achieve sensational centrifugal accelerations up to 95 times Earth gravity. They also mentioned that the energy application resulted from this new machine is about 150% greater than the classic planetary mills. Accordingly, it is expected that this new milling machine will enable the researchers to get their milled powders in short ball-milling time with fine powder particle sizes that can reach to be less than 1m in diameter. The vials available for this new type of mill have sizes of 20, 45, and 80ml. Both the vials and balls can be made of the same materials, which are used in the manufacture of large vials used for the classic Fritsch planetary ball mills, as shown in the previous text.

Retsch has also produced a number of capable high-energy planetary ball mills with different capacities (http://www.retsch.com/products/milling/planetary-ball-mills/); namely Planetary Ball Mill PM 100 (Figure 2.21(a)), Planetary Ball Mill PM 100 CM, Planetary Ball Mill PM 200, and Planetary Ball Mill PM 400 (Figure 2.21(b)). Like Fritsch, Retsch offers high-quality ball-milling vials with different capacities (12, 25, 50, 50, 125, 250, and 500ml) and balls of different diameters (540mm), as exemplified in Figure 2.22. These milling tools can be made of hardened steel as well as other different materials such as carbides, nitrides, and oxides.

Figure 2.21. Photographs of Retsch planetary-type high-energy ball mill of (a) PM 100 and (b) PM 400. The equipment is housed in the Nanotechnology Laboratory, Energy and Building Research Center (EBRC), Kuwait Institute for Scientific Research (KISR).

Figure 2.22. Photographs of the vials used for Retsch planetary ball mills with capacity of (a) 80ml, (b) 250ml, and (c) 500ml. The vials and the balls shown are made of tempered steel (Nanotechnology Laboratory, Energy and Building Research Center (EBRC), Kuwait Institute for Scientific Research (KISR)).

Both Fritsch and Retsch companies have offered special types of vials that allow monitoring and measure the gas pressure and temperature inside the vial during the high-energy planetary ball-milling process. Moreover, these vials allow milling the powders under inert (e.g., argon or helium) or reactive gas (e.g., hydrogen or nitrogen) with a maximum gas pressure of 500kPa (5bar). It is worth mentioning here that such a development made on the vials design allows the users and researchers to monitor the progress tackled during the MA and MD processes by following up the phase transformations and heat realizing upon RBM, where the interaction of the gas used with the freshly created surfaces of the powders during milling (adsorption, absorption, desorption, and decomposition) can be monitored. Furthermore, the data of the temperature and pressure driven upon using this system is very helpful when the ball mills are used for the formation of stable (e.g., intermetallic compounds) and metastable (e.g., amorphous and nanocrystalline materials) phases. In addition, measuring the vial temperature during blank (without samples) high-energy ball mill can be used as an indication to realize the effects of friction, impact, and conversion processes.

More recently, Evico-magnetics (www.evico-magnetics.de) has manufactured an extraordinary high-pressure milling vial with gas-temperature-monitoring (GTM) system. Likewise both system produced by Fritsch and Retsch, the developed system produced by Evico-magnetics, allowing RBM but at very high gas pressure that can reach to 15,000kPa (150bar). In addition, it allows in situ monitoring of temperature and of pressure by incorporating GTM. The vials, which can be used with any planetary mills, are made of hardened steel with capacity up to 220ml. The manufacturer offers also two-channel system for simultaneous use of two milling vials.

Using different ball mills as examples, it has been shown that, on the basis of the theory of glancing collision of rigid bodies, the theoretical calculation of tPT conditions and the kinetics of mechanochemical processes are possible for the reactors that are intended to perform different physicochemical processes during mechanical treatment of solids. According to the calculations, the physicochemical effect of mechanochemical reactors is due to short-time impulses of pressure (P = ~ 10101011 dyn cm2) with shift, and temperature T(x, t). The highest temperature impulse T ~ 103 K are caused by the dry friction phenomenon.

Typical spatial and time parameters of the impactfriction interaction of the particles with a size R ~ 104 cm are as follows: localization region, x ~ 106 cm; time, t ~ 108 s. On the basis of the obtained theoretical results, the effect of short-time contact fusion of particles treated in various comminuting devices can play a key role in the mechanism of activation and chemical reactions for wide range of mechanochemical processes. This role involves several aspects, that is, the very fact of contact fusion transforms the solid phase process onto another qualitative level, judging from the mass transfer coefficients. The spatial and time characteristics of the fused zone are such that quenching of non-equilibrium defects and intermediate products of chemical reactions occurs; solidification of the fused zone near the contact point results in the formation of a nanocrystal or nanoamor- phous state. The calculation models considered above and the kinetic equations obtained using them allow quantitative ab initio estimates of rate constants to be performed for any specific processes of mechanical activation and chemical transformation of the substances in ball mills.

There are two classes of ball mills: planetary and mixer (also called swing) mill. The terms high-speed vibration milling (HSVM), high-speed ball milling (HSBM), and planetary ball mill (PBM) are often used. The commercial apparatus are PBMs Fritsch P-5 and Fritsch Pulverisettes 6 and 7 classic line, the Retsch shaker (or mixer) mills ZM1, MM200, MM400, AS200, the Spex 8000, 6750 freezer/mill SPEX CertiPrep, and the SWH-0.4 vibrational ball mill. In some instances temperature controlled apparatus were used (58MI1); freezer/mills were used in some rare cases (13MOP1824).

The balls are made of stainless steel, agate (SiO2), zirconium oxide (ZrO2), or silicon nitride (Si3N). The use of stainless steel will contaminate the samples with steel particles and this is a problem both for solid-state NMR and for drug purity.

However, there are many types of ball mills (see Chapter 2 for more details), such as drum ball mills, jet ball mills, bead-mills, roller ball mills, vibration ball mills, and planetary ball mills, they can be grouped or classified into two types according to their rotation speed, as follows: (i) high-energy ball mills and (ii) low-energy ball mills. Table 3.1 presents characteristics and comparison between three types of ball mills (attritors, vibratory mills, planetary ball mills and roller mills) that are intensively used on MA, MD, and MM techniques.

In fact, choosing the right ball mill depends on the objectives of the process and the sort of materials (hard, brittle, ductile, etc.) that will be subjecting to the ball-milling process. For example, the characteristics and properties of those ball mills used for reduction in the particle size of the starting materials via top-down approach, or so-called mechanical milling (MM process), or for mechanically induced solid-state mixing for fabrications of composite and nanocomposite powders may differ widely from those mills used for achieving mechanically induced solid-state reaction (MISSR) between the starting reactant materials of elemental powders (MA process), or for tackling dramatic phase transformation changes on the structure of the starting materials (MD). Most of the ball mills in the market can be employed for different purposes and for preparing of wide range of new materials.

Martinez-Sanchez et al. [4] have pointed out that employing of high-energy ball mills not only contaminates the milled amorphous powders with significant volume fractions of impurities that come from milling media that move at high velocity, but it also affects the stability and crystallization properties of the formed amorphous phase. They have proved that the properties of the formed amorphous phase (Mo53Ni47) powder depends on the type of the ball-mill equipment (SPEX 8000D Mixer/Mill and Zoz Simoloter mill) used in their important investigations. This was indicated by the high contamination content of oxygen on the amorphous powders prepared by SPEX 8000D Mixer/Mill, when compared with the corresponding amorphous powders prepared by Zoz Simoloter mill. Accordingly, they have attributed the poor stabilities, indexed by the crystallization temperature of the amorphous phase formed by SPEX 8000D Mixer/Mill to the presence of foreign matter (impurities).

construction of ball mill/ ball mill structure | henan deya machinery co., ltd

construction of ball mill/ ball mill structure | henan deya machinery co., ltd

Structurally, each ball mill consists of a horizontal cylindrical shell, provided with renewable wearing liners and a charge of grinding medium. The drum is supported so as to rotate on its axis on hollow trunnions attached to the end walls (attached figure 1 ball mill). The diameter of the mill determines the pressure that can be exerted by the medium on the ore particles and, in general, the larger the feed size the larger needs to be the mill diameter. The length of the mill, in conjunction with the diameter, determines the volume, and hence the capacity of the mill.

The feed material is usually fed to the mill continuously through one end trunnion, the ground product leaving via the other trunnion, although in certain applications the product may leave the mill through a number of ports spaced around the periphery of the shell. All types of mill can be used for wet or dry grinding by modification of feed and discharge equipment.

Mill shells are designed to sustain impact and heavy loading, and are constructed from rolled mild steel plates, buttwelded together. Holes are drilled to take the bolts for holding the liners. Normally one or two access manholes are provided. For attachment of the trunnion heads, heavy flanges of fabricated or cast steel are usually welded or bolted to the ends of the plate shells, planed with parallel faces which are grooved to receive a corresponding spigot on the head, and drilled for bolting to the head.

The mill ends, or trunnion heads, may be of nodular or grey cast iron for diameters less than about 1 m. Larger heads are constructed from cast steel, which is relatively light, and can be welded. The heads are fibbed for reinforcement and may be flat, slightly conical, or dished. They are machined and drilled to fit shell flanges(attached figure 2 tube mill end and trunnion). figure 2 Tube mill end and trunnion Trunnions and bearings The trunnions are made from cast iron or steel and are spigoted and bolted to the end plates, although in small mills they may be integral with the end plates. They are highly polished to reduce bearing friction. Most trunnion bearings are rigid highgrade iron castings with 120-180 degree lining of white metal in the bearing area, surrounded by a fabricated mild steel housing, which is bolted into the concrete foundations (attached figure 3 oil-lubricated trunnion bearing). figure 3 oil-lubricated trunnion bearing The bearings in smaller mills may be grease lubricated, but oil lubrication is favoured in large mills, via motor-driven oil pumps. The effectiveness of normal lubrication protection is reduced when the mill is shut down for any length of time, and many mills are fitted with manually operated hydraulic starting lubricators, which force oil between the trunnion and trunnion bearing, preventing friction damage to the beating surface, on starting, by re-establishing the protecting film of oil (attached figure 4 Hydraulic starting lubricator). figure 4 Hydraulic starting lubricator Some manufacturers install large roller bearings, which can withstand higher forces than plain metal bearings (attached figure 5 Trunnion with roller-type bearings ). Trunnion with roller-type bearings Drive Ball mills are most commonly rotated by a pinion meshing with a girth ring bolted to one end of the machine. The pinion shaft is driven from the prime mover through vee-belts, in small mills of less than about 180 kW. For larger mills the shaft is coupled directly to the output shaft of a slow-speed synchronous motor, or to the output shaft of a motor-driven helical or double helical gear reducer. In some mills thyristors and DC motors are used to give variable speed control. Very large mills driven by girth gears require two to four pinions, and complex load sharing systems must be incorporated. Large ball mills can be rotated by a central trunnion drive, which has the advantage of requiting no expensive ring gear, the drive being from one or two motors, with the inclusion of two-or three-speed gearing. The larger the mill, the greater are the stresses between the shells and heads and the trunnions and heads. In the early 1970s, maintenance problems related to the application of gear and pinion and large speed reducer drives on dry grinding cement mills of long length drove operators to seek an alternative drive design. As a result, a number of gearless drive (ring motor) cement mills were installed and the technology became relatively common in the European cement industry. Liners The internal working faces of mills consist of renewable liners, which must withstand impact, be wear-resistant, and promote the most favourable motion of the charge. Rod mill ends have plain fiat liners, slightly coned to encourage the selfcentring and straight-line action of rods. They are made usually from manganese or chromemolybdenum steels, having high impact strength. Ball-mill ends usually have ribs to lift the charge with the mill rotation. These prevent excessive slipping and increase liner life. They can be made from white cast iron, alloyed with nickel (Ni-hard), other wear-resistant materials, and rubber. Trunnion liners are designed for each application and can be conical, plain, with advancing or retarding spirals. They are manufactured from hard cast iron or cast alloy steel, a rubber lining often being bonded to the inner surface for increased life. Shell liners have an endless variety of lifter shapes. Smooth linings result in much abrasion, and hence a fine grind, but with associated high metal wear. The liners are therefore generally shaped to provide lifting action and to add impact and crushing, the most common shapes being wave, Lorain, stepped, and shiplap (attached figure 6 ball mill shell liners). The liners are attached to the mill shell and ends by forged steel countersunk liner bolts. figure 6 ball mill shell liners Rod mill liners are also generally of alloyed steel or cast iron, and of the wave type, although Nihard step liners may be used with rods up to 4 cm in diameter. Lorain liners are extensively used for coarse grinding in rod and ball mills, and consist of high carbon rolled steel plates held in place by manganese or hard alloy steel lifter bars. Ball mill liners may be made of hard cast iron when balls of up to 5 cm in diameter are used, but otherwise cast manganese steel, cast chromium steel, or Ni-hard are used. Ball Mill liners are a major cost in mill operation, and efforts to prolong liner life are constantly being made. There are at least ten wear-resistant alloys used for ball-mill linings, the more abrasion-resistant alloys containing large amounts of chromium, molybdenum, and nickel being the most expensive. However, with steadily increasing labour costs for replacing liners, the trend is towards selecting liners which have the best service life regardless of cost. Rubber liners and lifters have supplanted steel in some operations, and have been found to be longer lasting, easier and faster to install, and their use results in a significant reduction of noise level. However, increased medium consumption has been reported using rubber liners rather than Ni-hard liners. Rubber lining may also have drawbacks in processes requiring the addition of flotation reagents directly into the mill, or temperatures exceeding 80. They are also thicker than their steel counterparts, which reduces mill capacity, a particularly important factor in small mills. There are also important differences in design aspects between steel and rubber linings. The engineering advantage of rubber is that, at relatively low impact forces, it will yield, resuming its shape when the forces are removed. However, if the forces are too powerful, or the speed of the material hitting the rubber is too high, the wear rate is dramatic. In primary grinding applications, with severe grinding forces, the wear rate of rubber inhibits its use. Even though the wear cost per tonne of ore may be similar to that of the more expensive steel lining, the more frequent interruptions for maintenance often make it uneconomical. The advantage of steel is its great hardness, and steel-capped liners have been developed which combine the best qualities of rubber and steel. These consist of rubber lifter bars with steel inserts embedded in the face, the steel providing the wear resistance and the rubber backing cushioning the impacts. A concept which has found some application for ball mills is the angular spiral lining. The circular cross-section of a conventional mill is changed to a square cross-section with rounded corners by the addition of rubber-lined, flanged frames, which are offset to spiral in a direction opposite to the mill rotation. Double wave liner plates are fitted to these frames, and a sequential lifting of the charge down the length of the mill results, which increases the grinding ball to pulp mixing through axial motion of the grinding charge, along with the normal cascading motion. Substantial increases in throughput, along with reductions in energy and grinding medium consumptions, have been reported. To avoid the rapid wear of rubber liners, a new patented technology for a magnetic metal liner has been developed by China Metallurgical Mining Corp. The magnets keep the lining in contact with the steel shell and the end plates without using bolts, while the ball scats in the charge and magnetic minerals are attracted to the liner to form a 30-40mm protective layer, which is continuously renewed as it wears. Over 10 years the magnetic metal liner has been used in more than 300 full-scale ball mills at over 100 mine sites in China. For example, one set of the magnetic metal liner was installed in a 3.2m (D) x 4.5 m (L) secondary ball mill (60mm ball charge) at Waitoushan concentrator of Benxi Iron and Steel Corp. in 1992. Over nine years, 2.6 Mt of iron ore were ground at zero additional liner cost and zero maintenance of the liners. The magnetic metal liner has also found applications in large ball mills, such as the 5.5 m (D) x 8.8 m (L) mills installed at Diaojuntai concentrator in Qidashan Iron Ore Mines. Another advantage of the magnetic metal liner is that as the liners are thinner and lighter than conventional manganese steel, the effective mill volume is larger, and the mill weight is reduced. An 11.3% decrease in mill power draw at the same operational conditions has been realised in a 2.7m (D) x 3.6m (L) ball mill by using the magnetic metal liner. Mill feeders Spout feeder The type of feeding arrangement used on the mill depends on whether the grinding is done in open or closed circuit and whether it is done wet or dry. The size and rate of feed are also important. Dry mills are usually fed by some sort of vibratory feeder. Three types of feeder are in use in wet-grinding mills. The simplest form is the spout feeder (attached figure 7 Spout feeder), consisting of a cylindrical or elliptical chute supported independently of the mill, and projecting directly into the trunnion liner. Material is fed by gravity through the spout to feed the mills. They are often used for feeding rod mills operating in open circuit or mills in closed circuit with hydrocyclone classifiers. figure 7 Spout feeder Drum feeders Drum feeders (attached figure 8 Drum feeder on ball mill) may be used as an alternative to a spout feeder when headroom is limited. The entire mill feed enters the drum via a chute or spout and an internal spiral carries it into the trunnion liner. The drum also provides a convenient method of adding grinding balls to a mill. figure 8 Drum feeder on ball mill Combination drum-scoop feeders These (attached figure 9 Drum-scoop feeder) are generally used for wet grinding in closed circuit with a spiral or rake classifier. New material is fed directly into the drum, while the scoop picks up the classifier sands for regrinding. Either a single or a double scoop can be used, the latter providing an increased feed rate and more uniform flow of material into the mill; the counter-balancing effect of the double-scoop design serves to smooth out power fluctuation and it is normally incorporated in large-diameter mills. Scoop feeders are sometimes used in place of the drum-scoop combination when mill feed is in the fine-size range. figure 9 Drum-scoop feeder

The trunnions are made from cast iron or steel and are spigoted and bolted to the end plates, although in small mills they may be integral with the end plates. They are highly polished to reduce bearing friction. Most trunnion bearings are rigid highgrade iron castings with 120-180 degree lining of white metal in the bearing area, surrounded by a fabricated mild steel housing, which is bolted into the concrete foundations (attached figure 3 oil-lubricated trunnion bearing). figure 3 oil-lubricated trunnion bearing The bearings in smaller mills may be grease lubricated, but oil lubrication is favoured in large mills, via motor-driven oil pumps. The effectiveness of normal lubrication protection is reduced when the mill is shut down for any length of time, and many mills are fitted with manually operated hydraulic starting lubricators, which force oil between the trunnion and trunnion bearing, preventing friction damage to the beating surface, on starting, by re-establishing the protecting film of oil (attached figure 4 Hydraulic starting lubricator). figure 4 Hydraulic starting lubricator Some manufacturers install large roller bearings, which can withstand higher forces than plain metal bearings (attached figure 5 Trunnion with roller-type bearings ). Trunnion with roller-type bearings Drive Ball mills are most commonly rotated by a pinion meshing with a girth ring bolted to one end of the machine. The pinion shaft is driven from the prime mover through vee-belts, in small mills of less than about 180 kW. For larger mills the shaft is coupled directly to the output shaft of a slow-speed synchronous motor, or to the output shaft of a motor-driven helical or double helical gear reducer. In some mills thyristors and DC motors are used to give variable speed control. Very large mills driven by girth gears require two to four pinions, and complex load sharing systems must be incorporated. Large ball mills can be rotated by a central trunnion drive, which has the advantage of requiting no expensive ring gear, the drive being from one or two motors, with the inclusion of two-or three-speed gearing. The larger the mill, the greater are the stresses between the shells and heads and the trunnions and heads. In the early 1970s, maintenance problems related to the application of gear and pinion and large speed reducer drives on dry grinding cement mills of long length drove operators to seek an alternative drive design. As a result, a number of gearless drive (ring motor) cement mills were installed and the technology became relatively common in the European cement industry. Liners The internal working faces of mills consist of renewable liners, which must withstand impact, be wear-resistant, and promote the most favourable motion of the charge. Rod mill ends have plain fiat liners, slightly coned to encourage the selfcentring and straight-line action of rods. They are made usually from manganese or chromemolybdenum steels, having high impact strength. Ball-mill ends usually have ribs to lift the charge with the mill rotation. These prevent excessive slipping and increase liner life. They can be made from white cast iron, alloyed with nickel (Ni-hard), other wear-resistant materials, and rubber. Trunnion liners are designed for each application and can be conical, plain, with advancing or retarding spirals. They are manufactured from hard cast iron or cast alloy steel, a rubber lining often being bonded to the inner surface for increased life. Shell liners have an endless variety of lifter shapes. Smooth linings result in much abrasion, and hence a fine grind, but with associated high metal wear. The liners are therefore generally shaped to provide lifting action and to add impact and crushing, the most common shapes being wave, Lorain, stepped, and shiplap (attached figure 6 ball mill shell liners). The liners are attached to the mill shell and ends by forged steel countersunk liner bolts. figure 6 ball mill shell liners Rod mill liners are also generally of alloyed steel or cast iron, and of the wave type, although Nihard step liners may be used with rods up to 4 cm in diameter. Lorain liners are extensively used for coarse grinding in rod and ball mills, and consist of high carbon rolled steel plates held in place by manganese or hard alloy steel lifter bars. Ball mill liners may be made of hard cast iron when balls of up to 5 cm in diameter are used, but otherwise cast manganese steel, cast chromium steel, or Ni-hard are used. Ball Mill liners are a major cost in mill operation, and efforts to prolong liner life are constantly being made. There are at least ten wear-resistant alloys used for ball-mill linings, the more abrasion-resistant alloys containing large amounts of chromium, molybdenum, and nickel being the most expensive. However, with steadily increasing labour costs for replacing liners, the trend is towards selecting liners which have the best service life regardless of cost. Rubber liners and lifters have supplanted steel in some operations, and have been found to be longer lasting, easier and faster to install, and their use results in a significant reduction of noise level. However, increased medium consumption has been reported using rubber liners rather than Ni-hard liners. Rubber lining may also have drawbacks in processes requiring the addition of flotation reagents directly into the mill, or temperatures exceeding 80. They are also thicker than their steel counterparts, which reduces mill capacity, a particularly important factor in small mills. There are also important differences in design aspects between steel and rubber linings. The engineering advantage of rubber is that, at relatively low impact forces, it will yield, resuming its shape when the forces are removed. However, if the forces are too powerful, or the speed of the material hitting the rubber is too high, the wear rate is dramatic. In primary grinding applications, with severe grinding forces, the wear rate of rubber inhibits its use. Even though the wear cost per tonne of ore may be similar to that of the more expensive steel lining, the more frequent interruptions for maintenance often make it uneconomical. The advantage of steel is its great hardness, and steel-capped liners have been developed which combine the best qualities of rubber and steel. These consist of rubber lifter bars with steel inserts embedded in the face, the steel providing the wear resistance and the rubber backing cushioning the impacts. A concept which has found some application for ball mills is the angular spiral lining. The circular cross-section of a conventional mill is changed to a square cross-section with rounded corners by the addition of rubber-lined, flanged frames, which are offset to spiral in a direction opposite to the mill rotation. Double wave liner plates are fitted to these frames, and a sequential lifting of the charge down the length of the mill results, which increases the grinding ball to pulp mixing through axial motion of the grinding charge, along with the normal cascading motion. Substantial increases in throughput, along with reductions in energy and grinding medium consumptions, have been reported. To avoid the rapid wear of rubber liners, a new patented technology for a magnetic metal liner has been developed by China Metallurgical Mining Corp. The magnets keep the lining in contact with the steel shell and the end plates without using bolts, while the ball scats in the charge and magnetic minerals are attracted to the liner to form a 30-40mm protective layer, which is continuously renewed as it wears. Over 10 years the magnetic metal liner has been used in more than 300 full-scale ball mills at over 100 mine sites in China. For example, one set of the magnetic metal liner was installed in a 3.2m (D) x 4.5 m (L) secondary ball mill (60mm ball charge) at Waitoushan concentrator of Benxi Iron and Steel Corp. in 1992. Over nine years, 2.6 Mt of iron ore were ground at zero additional liner cost and zero maintenance of the liners. The magnetic metal liner has also found applications in large ball mills, such as the 5.5 m (D) x 8.8 m (L) mills installed at Diaojuntai concentrator in Qidashan Iron Ore Mines. Another advantage of the magnetic metal liner is that as the liners are thinner and lighter than conventional manganese steel, the effective mill volume is larger, and the mill weight is reduced. An 11.3% decrease in mill power draw at the same operational conditions has been realised in a 2.7m (D) x 3.6m (L) ball mill by using the magnetic metal liner. Mill feeders Spout feeder The type of feeding arrangement used on the mill depends on whether the grinding is done in open or closed circuit and whether it is done wet or dry. The size and rate of feed are also important. Dry mills are usually fed by some sort of vibratory feeder. Three types of feeder are in use in wet-grinding mills. The simplest form is the spout feeder (attached figure 7 Spout feeder), consisting of a cylindrical or elliptical chute supported independently of the mill, and projecting directly into the trunnion liner. Material is fed by gravity through the spout to feed the mills. They are often used for feeding rod mills operating in open circuit or mills in closed circuit with hydrocyclone classifiers. figure 7 Spout feeder Drum feeders Drum feeders (attached figure 8 Drum feeder on ball mill) may be used as an alternative to a spout feeder when headroom is limited. The entire mill feed enters the drum via a chute or spout and an internal spiral carries it into the trunnion liner. The drum also provides a convenient method of adding grinding balls to a mill. figure 8 Drum feeder on ball mill Combination drum-scoop feeders These (attached figure 9 Drum-scoop feeder) are generally used for wet grinding in closed circuit with a spiral or rake classifier. New material is fed directly into the drum, while the scoop picks up the classifier sands for regrinding. Either a single or a double scoop can be used, the latter providing an increased feed rate and more uniform flow of material into the mill; the counter-balancing effect of the double-scoop design serves to smooth out power fluctuation and it is normally incorporated in large-diameter mills. Scoop feeders are sometimes used in place of the drum-scoop combination when mill feed is in the fine-size range. figure 9 Drum-scoop feeder

The bearings in smaller mills may be grease lubricated, but oil lubrication is favoured in large mills, via motor-driven oil pumps. The effectiveness of normal lubrication protection is reduced when the mill is shut down for any length of time, and many mills are fitted with manually operated hydraulic starting lubricators, which force oil between the trunnion and trunnion bearing, preventing friction damage to the beating surface, on starting, by re-establishing the protecting film of oil (attached figure 4 Hydraulic starting lubricator). figure 4 Hydraulic starting lubricator Some manufacturers install large roller bearings, which can withstand higher forces than plain metal bearings (attached figure 5 Trunnion with roller-type bearings ). Trunnion with roller-type bearings Drive Ball mills are most commonly rotated by a pinion meshing with a girth ring bolted to one end of the machine. The pinion shaft is driven from the prime mover through vee-belts, in small mills of less than about 180 kW. For larger mills the shaft is coupled directly to the output shaft of a slow-speed synchronous motor, or to the output shaft of a motor-driven helical or double helical gear reducer. In some mills thyristors and DC motors are used to give variable speed control. Very large mills driven by girth gears require two to four pinions, and complex load sharing systems must be incorporated. Large ball mills can be rotated by a central trunnion drive, which has the advantage of requiting no expensive ring gear, the drive being from one or two motors, with the inclusion of two-or three-speed gearing. The larger the mill, the greater are the stresses between the shells and heads and the trunnions and heads. In the early 1970s, maintenance problems related to the application of gear and pinion and large speed reducer drives on dry grinding cement mills of long length drove operators to seek an alternative drive design. As a result, a number of gearless drive (ring motor) cement mills were installed and the technology became relatively common in the European cement industry. Liners The internal working faces of mills consist of renewable liners, which must withstand impact, be wear-resistant, and promote the most favourable motion of the charge. Rod mill ends have plain fiat liners, slightly coned to encourage the selfcentring and straight-line action of rods. They are made usually from manganese or chromemolybdenum steels, having high impact strength. Ball-mill ends usually have ribs to lift the charge with the mill rotation. These prevent excessive slipping and increase liner life. They can be made from white cast iron, alloyed with nickel (Ni-hard), other wear-resistant materials, and rubber. Trunnion liners are designed for each application and can be conical, plain, with advancing or retarding spirals. They are manufactured from hard cast iron or cast alloy steel, a rubber lining often being bonded to the inner surface for increased life. Shell liners have an endless variety of lifter shapes. Smooth linings result in much abrasion, and hence a fine grind, but with associated high metal wear. The liners are therefore generally shaped to provide lifting action and to add impact and crushing, the most common shapes being wave, Lorain, stepped, and shiplap (attached figure 6 ball mill shell liners). The liners are attached to the mill shell and ends by forged steel countersunk liner bolts. figure 6 ball mill shell liners Rod mill liners are also generally of alloyed steel or cast iron, and of the wave type, although Nihard step liners may be used with rods up to 4 cm in diameter. Lorain liners are extensively used for coarse grinding in rod and ball mills, and consist of high carbon rolled steel plates held in place by manganese or hard alloy steel lifter bars. Ball mill liners may be made of hard cast iron when balls of up to 5 cm in diameter are used, but otherwise cast manganese steel, cast chromium steel, or Ni-hard are used. Ball Mill liners are a major cost in mill operation, and efforts to prolong liner life are constantly being made. There are at least ten wear-resistant alloys used for ball-mill linings, the more abrasion-resistant alloys containing large amounts of chromium, molybdenum, and nickel being the most expensive. However, with steadily increasing labour costs for replacing liners, the trend is towards selecting liners which have the best service life regardless of cost. Rubber liners and lifters have supplanted steel in some operations, and have been found to be longer lasting, easier and faster to install, and their use results in a significant reduction of noise level. However, increased medium consumption has been reported using rubber liners rather than Ni-hard liners. Rubber lining may also have drawbacks in processes requiring the addition of flotation reagents directly into the mill, or temperatures exceeding 80. They are also thicker than their steel counterparts, which reduces mill capacity, a particularly important factor in small mills. There are also important differences in design aspects between steel and rubber linings. The engineering advantage of rubber is that, at relatively low impact forces, it will yield, resuming its shape when the forces are removed. However, if the forces are too powerful, or the speed of the material hitting the rubber is too high, the wear rate is dramatic. In primary grinding applications, with severe grinding forces, the wear rate of rubber inhibits its use. Even though the wear cost per tonne of ore may be similar to that of the more expensive steel lining, the more frequent interruptions for maintenance often make it uneconomical. The advantage of steel is its great hardness, and steel-capped liners have been developed which combine the best qualities of rubber and steel. These consist of rubber lifter bars with steel inserts embedded in the face, the steel providing the wear resistance and the rubber backing cushioning the impacts. A concept which has found some application for ball mills is the angular spiral lining. The circular cross-section of a conventional mill is changed to a square cross-section with rounded corners by the addition of rubber-lined, flanged frames, which are offset to spiral in a direction opposite to the mill rotation. Double wave liner plates are fitted to these frames, and a sequential lifting of the charge down the length of the mill results, which increases the grinding ball to pulp mixing through axial motion of the grinding charge, along with the normal cascading motion. Substantial increases in throughput, along with reductions in energy and grinding medium consumptions, have been reported. To avoid the rapid wear of rubber liners, a new patented technology for a magnetic metal liner has been developed by China Metallurgical Mining Corp. The magnets keep the lining in contact with the steel shell and the end plates without using bolts, while the ball scats in the charge and magnetic minerals are attracted to the liner to form a 30-40mm protective layer, which is continuously renewed as it wears. Over 10 years the magnetic metal liner has been used in more than 300 full-scale ball mills at over 100 mine sites in China. For example, one set of the magnetic metal liner was installed in a 3.2m (D) x 4.5 m (L) secondary ball mill (60mm ball charge) at Waitoushan concentrator of Benxi Iron and Steel Corp. in 1992. Over nine years, 2.6 Mt of iron ore were ground at zero additional liner cost and zero maintenance of the liners. The magnetic metal liner has also found applications in large ball mills, such as the 5.5 m (D) x 8.8 m (L) mills installed at Diaojuntai concentrator in Qidashan Iron Ore Mines. Another advantage of the magnetic metal liner is that as the liners are thinner and lighter than conventional manganese steel, the effective mill volume is larger, and the mill weight is reduced. An 11.3% decrease in mill power draw at the same operational conditions has been realised in a 2.7m (D) x 3.6m (L) ball mill by using the magnetic metal liner. Mill feeders Spout feeder The type of feeding arrangement used on the mill depends on whether the grinding is done in open or closed circuit and whether it is done wet or dry. The size and rate of feed are also important. Dry mills are usually fed by some sort of vibratory feeder. Three types of feeder are in use in wet-grinding mills. The simplest form is the spout feeder (attached figure 7 Spout feeder), consisting of a cylindrical or elliptical chute supported independently of the mill, and projecting directly into the trunnion liner. Material is fed by gravity through the spout to feed the mills. They are often used for feeding rod mills operating in open circuit or mills in closed circuit with hydrocyclone classifiers. figure 7 Spout feeder Drum feeders Drum feeders (attached figure 8 Drum feeder on ball mill) may be used as an alternative to a spout feeder when headroom is limited. The entire mill feed enters the drum via a chute or spout and an internal spiral carries it into the trunnion liner. The drum also provides a convenient method of adding grinding balls to a mill. figure 8 Drum feeder on ball mill Combination drum-scoop feeders These (attached figure 9 Drum-scoop feeder) are generally used for wet grinding in closed circuit with a spiral or rake classifier. New material is fed directly into the drum, while the scoop picks up the classifier sands for regrinding. Either a single or a double scoop can be used, the latter providing an increased feed rate and more uniform flow of material into the mill; the counter-balancing effect of the double-scoop design serves to smooth out power fluctuation and it is normally incorporated in large-diameter mills. Scoop feeders are sometimes used in place of the drum-scoop combination when mill feed is in the fine-size range. figure 9 Drum-scoop feeder

Some manufacturers install large roller bearings, which can withstand higher forces than plain metal bearings (attached figure 5 Trunnion with roller-type bearings ). Trunnion with roller-type bearings Drive Ball mills are most commonly rotated by a pinion meshing with a girth ring bolted to one end of the machine. The pinion shaft is driven from the prime mover through vee-belts, in small mills of less than about 180 kW. For larger mills the shaft is coupled directly to the output shaft of a slow-speed synchronous motor, or to the output shaft of a motor-driven helical or double helical gear reducer. In some mills thyristors and DC motors are used to give variable speed control. Very large mills driven by girth gears require two to four pinions, and complex load sharing systems must be incorporated. Large ball mills can be rotated by a central trunnion drive, which has the advantage of requiting no expensive ring gear, the drive being from one or two motors, with the inclusion of two-or three-speed gearing. The larger the mill, the greater are the stresses between the shells and heads and the trunnions and heads. In the early 1970s, maintenance problems related to the application of gear and pinion and large speed reducer drives on dry grinding cement mills of long length drove operators to seek an alternative drive design. As a result, a number of gearless drive (ring motor) cement mills were installed and the technology became relatively common in the European cement industry. Liners The internal working faces of mills consist of renewable liners, which must withstand impact, be wear-resistant, and promote the most favourable motion of the charge. Rod mill ends have plain fiat liners, slightly coned to encourage the selfcentring and straight-line action of rods. They are made usually from manganese or chromemolybdenum steels, having high impact strength. Ball-mill ends usually have ribs to lift the charge with the mill rotation. These prevent excessive slipping and increase liner life. They can be made from white cast iron, alloyed with nickel (Ni-hard), other wear-resistant materials, and rubber. Trunnion liners are designed for each application and can be conical, plain, with advancing or retarding spirals. They are manufactured from hard cast iron or cast alloy steel, a rubber lining often being bonded to the inner surface for increased life. Shell liners have an endless variety of lifter shapes. Smooth linings result in much abrasion, and hence a fine grind, but with associated high metal wear. The liners are therefore generally shaped to provide lifting action and to add impact and crushing, the most common shapes being wave, Lorain, stepped, and shiplap (attached figure 6 ball mill shell liners). The liners are attached to the mill shell and ends by forged steel countersunk liner bolts. figure 6 ball mill shell liners Rod mill liners are also generally of alloyed steel or cast iron, and of the wave type, although Nihard step liners may be used with rods up to 4 cm in diameter. Lorain liners are extensively used for coarse grinding in rod and ball mills, and consist of high carbon rolled steel plates held in place by manganese or hard alloy steel lifter bars. Ball mill liners may be made of hard cast iron when balls of up to 5 cm in diameter are used, but otherwise cast manganese steel, cast chromium steel, or Ni-hard are used. Ball Mill liners are a major cost in mill operation, and efforts to prolong liner life are constantly being made. There are at least ten wear-resistant alloys used for ball-mill linings, the more abrasion-resistant alloys containing large amounts of chromium, molybdenum, and nickel being the most expensive. However, with steadily increasing labour costs for replacing liners, the trend is towards selecting liners which have the best service life regardless of cost. Rubber liners and lifters have supplanted steel in some operations, and have been found to be longer lasting, easier and faster to install, and their use results in a significant reduction of noise level. However, increased medium consumption has been reported using rubber liners rather than Ni-hard liners. Rubber lining may also have drawbacks in processes requiring the addition of flotation reagents directly into the mill, or temperatures exceeding 80. They are also thicker than their steel counterparts, which reduces mill capacity, a particularly important factor in small mills. There are also important differences in design aspects between steel and rubber linings. The engineering advantage of rubber is that, at relatively low impact forces, it will yield, resuming its shape when the forces are removed. However, if the forces are too powerful, or the speed of the material hitting the rubber is too high, the wear rate is dramatic. In primary grinding applications, with severe grinding forces, the wear rate of rubber inhibits its use. Even though the wear cost per tonne of ore may be similar to that of the more expensive steel lining, the more frequent interruptions for maintenance often make it uneconomical. The advantage of steel is its great hardness, and steel-capped liners have been developed which combine the best qualities of rubber and steel. These consist of rubber lifter bars with steel inserts embedded in the face, the steel providing the wear resistance and the rubber backing cushioning the impacts. A concept which has found some application for ball mills is the angular spiral lining. The circular cross-section of a conventional mill is changed to a square cross-section with rounded corners by the addition of rubber-lined, flanged frames, which are offset to spiral in a direction opposite to the mill rotation. Double wave liner plates are fitted to these frames, and a sequential lifting of the charge down the length of the mill results, which increases the grinding ball to pulp mixing through axial motion of the grinding charge, along with the normal cascading motion. Substantial increases in throughput, along with reductions in energy and grinding medium consumptions, have been reported. To avoid the rapid wear of rubber liners, a new patented technology for a magnetic metal liner has been developed by China Metallurgical Mining Corp. The magnets keep the lining in contact with the steel shell and the end plates without using bolts, while the ball scats in the charge and magnetic minerals are attracted to the liner to form a 30-40mm protective layer, which is continuously renewed as it wears. Over 10 years the magnetic metal liner has been used in more than 300 full-scale ball mills at over 100 mine sites in China. For example, one set of the magnetic metal liner was installed in a 3.2m (D) x 4.5 m (L) secondary ball mill (60mm ball charge) at Waitoushan concentrator of Benxi Iron and Steel Corp. in 1992. Over nine years, 2.6 Mt of iron ore were ground at zero additional liner cost and zero maintenance of the liners. The magnetic metal liner has also found applications in large ball mills, such as the 5.5 m (D) x 8.8 m (L) mills installed at Diaojuntai concentrator in Qidashan Iron Ore Mines. Another advantage of the magnetic metal liner is that as the liners are thinner and lighter than conventional manganese steel, the effective mill volume is larger, and the mill weight is reduced. An 11.3% decrease in mill power draw at the same operational conditions has been realised in a 2.7m (D) x 3.6m (L) ball mill by using the magnetic metal liner. Mill feeders Spout feeder The type of feeding arrangement used on the mill depends on whether the grinding is done in open or closed circuit and whether it is done wet or dry. The size and rate of feed are also important. Dry mills are usually fed by some sort of vibratory feeder. Three types of feeder are in use in wet-grinding mills. The simplest form is the spout feeder (attached figure 7 Spout feeder), consisting of a cylindrical or elliptical chute supported independently of the mill, and projecting directly into the trunnion liner. Material is fed by gravity through the spout to feed the mills. They are often used for feeding rod mills operating in open circuit or mills in closed circuit with hydrocyclone classifiers. figure 7 Spout feeder Drum feeders Drum feeders (attached figure 8 Drum feeder on ball mill) may be used as an alternative to a spout feeder when headroom is limited. The entire mill feed enters the drum via a chute or spout and an internal spiral carries it into the trunnion liner. The drum also provides a convenient method of adding grinding balls to a mill. figure 8 Drum feeder on ball mill Combination drum-scoop feeders These (attached figure 9 Drum-scoop feeder) are generally used for wet grinding in closed circuit with a spiral or rake classifier. New material is fed directly into the drum, while the scoop picks up the classifier sands for regrinding. Either a single or a double scoop can be used, the latter providing an increased feed rate and more uniform flow of material into the mill; the counter-balancing effect of the double-scoop design serves to smooth out power fluctuation and it is normally incorporated in large-diameter mills. Scoop feeders are sometimes used in place of the drum-scoop combination when mill feed is in the fine-size range. figure 9 Drum-scoop feeder

Ball mills are most commonly rotated by a pinion meshing with a girth ring bolted to one end of the machine. The pinion shaft is driven from the prime mover through vee-belts, in small mills of less than about 180 kW. For larger mills the shaft is coupled directly to the output shaft of a slow-speed synchronous motor, or to the output shaft of a motor-driven helical or double helical gear reducer. In some mills thyristors and DC motors are used to give variable speed control. Very large mills driven by girth gears require two to four pinions, and complex load sharing systems must be incorporated.

Large ball mills can be rotated by a central trunnion drive, which has the advantage of requiting no expensive ring gear, the drive being from one or two motors, with the inclusion of two-or three-speed gearing.

The larger the mill, the greater are the stresses between the shells and heads and the trunnions and heads. In the early 1970s, maintenance problems related to the application of gear and pinion and large speed reducer drives on dry grinding cement mills of long length drove operators to seek an alternative drive design. As a result, a number of gearless drive (ring motor) cement mills were installed and the technology became relatively common in the European cement industry.

The internal working faces of mills consist of renewable liners, which must withstand impact, be wear-resistant, and promote the most favourable motion of the charge. Rod mill ends have plain fiat liners, slightly coned to encourage the selfcentring and straight-line action of rods. They are made usually from manganese or chromemolybdenum steels, having high impact strength. Ball-mill ends usually have ribs to lift the charge with the mill rotation. These prevent excessive slipping and increase liner life. They can be made from white cast iron, alloyed with nickel (Ni-hard), other wear-resistant materials, and rubber. Trunnion liners are designed for each application and can be conical, plain, with advancing or retarding spirals. They are manufactured from hard cast iron or cast alloy steel, a rubber lining often being bonded to the inner surface for increased life. Shell liners have an endless variety of lifter shapes. Smooth linings result in much abrasion, and hence a fine grind, but with associated high metal wear. The liners are therefore generally shaped to provide lifting action and to add impact and crushing, the most common shapes being wave, Lorain, stepped, and shiplap (attached figure 6 ball mill shell liners). The liners are attached to the mill shell and ends by forged steel countersunk liner bolts. figure 6 ball mill shell liners Rod mill liners are also generally of alloyed steel or cast iron, and of the wave type, although Nihard step liners may be used with rods up to 4 cm in diameter. Lorain liners are extensively used for coarse grinding in rod and ball mills, and consist of high carbon rolled steel plates held in place by manganese or hard alloy steel lifter bars. Ball mill liners may be made of hard cast iron when balls of up to 5 cm in diameter are used, but otherwise cast manganese steel, cast chromium steel, or Ni-hard are used. Ball Mill liners are a major cost in mill operation, and efforts to prolong liner life are constantly being made. There are at least ten wear-resistant alloys used for ball-mill linings, the more abrasion-resistant alloys containing large amounts of chromium, molybdenum, and nickel being the most expensive. However, with steadily increasing labour costs for replacing liners, the trend is towards selecting liners which have the best service life regardless of cost. Rubber liners and lifters have supplanted steel in some operations, and have been found to be longer lasting, easier and faster to install, and their use results in a significant reduction of noise level. However, increased medium consumption has been reported using rubber liners rather than Ni-hard liners. Rubber lining may also have drawbacks in processes requiring the addition of flotation reagents directly into the mill, or temperatures exceeding 80. They are also thicker than their steel counterparts, which reduces mill capacity, a particularly important factor in small mills. There are also important differences in design aspects between steel and rubber linings. The engineering advantage of rubber is that, at relatively low impact forces, it will yield, resuming its shape when the forces are removed. However, if the forces are too powerful, or the speed of the material hitting the rubber is too high, the wear rate is dramatic. In primary grinding applications, with severe grinding forces, the wear rate of rubber inhibits its use. Even though the wear cost per tonne of ore may be similar to that of the more expensive steel lining, the more frequent interruptions for maintenance often make it uneconomical. The advantage of steel is its great hardness, and steel-capped liners have been developed which combine the best qualities of rubber and steel. These consist of rubber lifter bars with steel inserts embedded in the face, the steel providing the wear resistance and the rubber backing cushioning the impacts. A concept which has found some application for ball mills is the angular spiral lining. The circular cross-section of a conventional mill is changed to a square cross-section with rounded corners by the addition of rubber-lined, flanged frames, which are offset to spiral in a direction opposite to the mill rotation. Double wave liner plates are fitted to these frames, and a sequential lifting of the charge down the length of the mill results, which increases the grinding ball to pulp mixing through axial motion of the grinding charge, along with the normal cascading motion. Substantial increases in throughput, along with reductions in energy and grinding medium consumptions, have been reported. To avoid the rapid wear of rubber liners, a new patented technology for a magnetic metal liner has been developed by China Metallurgical Mining Corp. The magnets keep the lining in contact with the steel shell and the end plates without using bolts, while the ball scats in the charge and magnetic minerals are attracted to the liner to form a 30-40mm protective layer, which is continuously renewed as it wears. Over 10 years the magnetic metal liner has been used in more than 300 full-scale ball mills at over 100 mine sites in China. For example, one set of the magnetic metal liner was installed in a 3.2m (D) x 4.5 m (L) secondary ball mill (60mm ball charge) at Waitoushan concentrator of Benxi Iron and Steel Corp. in 1992. Over nine years, 2.6 Mt of iron ore were ground at zero additional liner cost and zero maintenance of the liners. The magnetic metal liner has also found applications in large ball mills, such as the 5.5 m (D) x 8.8 m (L) mills installed at Diaojuntai concentrator in Qidashan Iron Ore Mines. Another advantage of the magnetic metal liner is that as the liners are thinner and lighter than conventional manganese steel, the effective mill volume is larger, and the mill weight is reduced. An 11.3% decrease in mill power draw at the same operational conditions has been realised in a 2.7m (D) x 3.6m (L) ball mill by using the magnetic metal liner. Mill feeders Spout feeder The type of feeding arrangement used on the mill depends on whether the grinding is done in open or closed circuit and whether it is done wet or dry. The size and rate of feed are also important. Dry mills are usually fed by some sort of vibratory feeder. Three types of feeder are in use in wet-grinding mills. The simplest form is the spout feeder (attached figure 7 Spout feeder), consisting of a cylindrical or elliptical chute supported independently of the mill, and projecting directly into the trunnion liner. Material is fed by gravity through the spout to feed the mills. They are often used for feeding rod mills operating in open circuit or mills in closed circuit with hydrocyclone classifiers. figure 7 Spout feeder Drum feeders Drum feeders (attached figure 8 Drum feeder on ball mill) may be used as an alternative to a spout feeder when headroom is limited. The entire mill feed enters the drum via a chute or spout and an internal spiral carries it into the trunnion liner. The drum also provides a convenient method of adding grinding balls to a mill. figure 8 Drum feeder on ball mill Combination drum-scoop feeders These (attached figure 9 Drum-scoop feeder) are generally used for wet grinding in closed circuit with a spiral or rake classifier. New material is fed directly into the drum, while the scoop picks up the classifier sands for regrinding. Either a single or a double scoop can be used, the latter providing an increased feed rate and more uniform flow of material into the mill; the counter-balancing effect of the double-scoop design serves to smooth out power fluctuation and it is normally incorporated in large-diameter mills. Scoop feeders are sometimes used in place of the drum-scoop combination when mill feed is in the fine-size range. figure 9 Drum-scoop feeder

Rod mill liners are also generally of alloyed steel or cast iron, and of the wave type, although Nihard step liners may be used with rods up to 4 cm in diameter. Lorain liners are extensively used for coarse grinding in rod and ball mills, and consist of high carbon rolled steel plates held in place by manganese or hard alloy steel lifter bars. Ball mill liners may be made of hard cast iron when balls of up to 5 cm in diameter are used, but otherwise cast manganese steel, cast chromium steel, or Ni-hard are used.

Ball Mill liners are a major cost in mill operation, and efforts to prolong liner life are constantly being made. There are at least ten wear-resistant alloys used for ball-mill linings, the more abrasion-resistant alloys containing large amounts of chromium, molybdenum, and nickel being the most expensive. However, with steadily increasing labour costs for replacing liners, the trend is towards selecting liners which have the best service life regardless of cost.

Rubber liners and lifters have supplanted steel in some operations, and have been found to be longer lasting, easier and faster to install, and their use results in a significant reduction of noise level. However, increased medium consumption has been reported using rubber liners rather than Ni-hard liners. Rubber lining may also have drawbacks in processes requiring the addition of flotation reagents directly into the mill, or temperatures exceeding 80. They are also thicker than their steel counterparts, which reduces mill capacity, a particularly important factor in small mills. There are also important differences in design aspects between steel and rubber linings.

The engineering advantage of rubber is that, at relatively low impact forces, it will yield, resuming its shape when the forces are removed. However, if the forces are too powerful, or the speed of the material hitting the rubber is too high, the wear rate is dramatic. In primary grinding applications, with severe grinding forces, the wear rate of rubber inhibits its use. Even though the wear cost per tonne of ore may be similar to that of the more expensive steel lining, the more frequent interruptions for maintenance often make it uneconomical. The advantage of steel is its great hardness, and steel-capped liners have been developed which combine the best qualities of rubber and steel. These consist of rubber lifter bars with steel inserts embedded in the face, the steel providing the wear resistance and the rubber backing cushioning the impacts.

A concept which has found some application for ball mills is the angular spiral lining. The circular cross-section of a conventional mill is changed to a square cross-section with rounded corners by the addition of rubber-lined, flanged frames, which are offset to spiral in a direction opposite to the mill rotation. Double wave liner plates are fitted to these frames, and a sequential lifting of the charge down the length of the mill results, which increases the grinding ball to pulp mixing through axial motion of the grinding charge, along with the normal cascading motion. Substantial increases in throughput, along with reductions in energy and grinding medium consumptions, have been reported.

To avoid the rapid wear of rubber liners, a new patented technology for a magnetic metal liner has been developed by China Metallurgical Mining Corp. The magnets keep the lining in contact with the steel shell and the end plates without using bolts, while the ball scats in the charge and magnetic minerals are attracted to the liner to form a 30-40mm protective layer, which is continuously renewed as it wears. Over 10 years the magnetic metal liner has been used in more than 300 full-scale ball mills at over 100 mine sites in China. For example, one set of the magnetic metal liner was installed in a 3.2m (D) x 4.5 m (L) secondary ball mill (60mm ball charge) at Waitoushan concentrator of Benxi Iron and Steel Corp. in 1992. Over nine years, 2.6 Mt of iron ore were ground at zero additional liner cost and zero maintenance of the liners. The magnetic metal liner has also found applications in large ball mills, such as the 5.5 m (D) x 8.8 m (L) mills installed at Diaojuntai concentrator in Qidashan Iron Ore Mines.

Another advantage of the magnetic metal liner is that as the liners are thinner and lighter than conventional manganese steel, the effective mill volume is larger, and the mill weight is reduced. An 11.3% decrease in mill power draw at the same operational conditions has been realised in a 2.7m (D) x 3.6m (L) ball mill by using the magnetic metal liner.

The type of feeding arrangement used on the mill depends on whether the grinding is done in open or closed circuit and whether it is done wet or dry. The size and rate of feed are also important. Dry mills are usually fed by some sort of vibratory feeder. Three types of feeder are in use in wet-grinding mills. The simplest form is the spout feeder (attached figure 7 Spout feeder), consisting of a cylindrical or elliptical chute supported independently of the mill, and projecting directly into the trunnion liner. Material is fed by gravity through the spout to feed the mills. They are often used for feeding rod mills operating in open circuit or mills in closed circuit with hydrocyclone classifiers. figure 7 Spout feeder Drum feeders Drum feeders (attached figure 8 Drum feeder on ball mill) may be used as an alternative to a spout feeder when headroom is limited. The entire mill feed enters the drum via a chute or spout and an internal spiral carries it into the trunnion liner. The drum also provides a convenient method of adding grinding balls to a mill. figure 8 Drum feeder on ball mill Combination drum-scoop feeders These (attached figure 9 Drum-scoop feeder) are generally used for wet grinding in closed circuit with a spiral or rake classifier. New material is fed directly into the drum, while the scoop picks up the classifier sands for regrinding. Either a single or a double scoop can be used, the latter providing an increased feed rate and more uniform flow of material into the mill; the counter-balancing effect of the double-scoop design serves to smooth out power fluctuation and it is normally incorporated in large-diameter mills. Scoop feeders are sometimes used in place of the drum-scoop combination when mill feed is in the fine-size range. figure 9 Drum-scoop feeder

Drum feeders (attached figure 8 Drum feeder on ball mill) may be used as an alternative to a spout feeder when headroom is limited. The entire mill feed enters the drum via a chute or spout and an internal spiral carries it into the trunnion liner. The drum also provides a convenient method of adding grinding balls to a mill. figure 8 Drum feeder on ball mill Combination drum-scoop feeders These (attached figure 9 Drum-scoop feeder) are generally used for wet grinding in closed circuit with a spiral or rake classifier. New material is fed directly into the drum, while the scoop picks up the classifier sands for regrinding. Either a single or a double scoop can be used, the latter providing an increased feed rate and more uniform flow of material into the mill; the counter-balancing effect of the double-scoop design serves to smooth out power fluctuation and it is normally incorporated in large-diameter mills. Scoop feeders are sometimes used in place of the drum-scoop combination when mill feed is in the fine-size range. figure 9 Drum-scoop feeder

These (attached figure 9 Drum-scoop feeder) are generally used for wet grinding in closed circuit with a spiral or rake classifier. New material is fed directly into the drum, while the scoop picks up the classifier sands for regrinding. Either a single or a double scoop can be used, the latter providing an increased feed rate and more uniform flow of material into the mill; the counter-balancing effect of the double-scoop design serves to smooth out power fluctuation and it is normally incorporated in large-diameter mills. Scoop feeders are sometimes used in place of the drum-scoop combination when mill feed is in the fine-size range. figure 9 Drum-scoop feeder

Related Equipments