electromagnetic separator wikipedia

electromagnetic separator | article about electromagnetic separator by the free dictionary

electromagnetic separator | article about electromagnetic separator by the free dictionary

All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.

electromagnetic separation | article about electromagnetic separation by the free dictionary

electromagnetic separation | article about electromagnetic separation by the free dictionary

Isotope separation is an important problem of great scientific and practical significance. Attempts to separate isotopes were made from the time of their discovery until the 1930s primarily with the aim of detecting isotopes of stable elements and measuring their mass and isotopic composition. It proved possible to separate only small (tracer) quantities of some elements insignificantly enriched with isotopes.

Fundamental research was begun in the 1930s on atomic nuclei, nuclear reactions, interactions between particles and nuclei, and related areas. The reliability of experimental data and the interpretation of the results obtained to a large extent depended on the purity and available amount of the isotope in question. However, the preparation of even milligram quantities of isotopes proved to be a complex task. Only small quantities of enriched mixtures of isotopes, mainly of the light elements, were isolated. Deuterium was the only isotope to be produced on an industrial scale. Further development of the technology of isotope separation was stimulated in 1939 by the discovery of the fission of 235U under the action of neutrons. This opened up possibilities for the peaceful and military uses of atomic energy. The production of large quantities of uranium isotopes and other elements, which are necessary components of nuclear fuels and materials in nuclear technology, became an important task at this time. Huge plants were constructed for this purpose.

There are a number of methods of isotope separation. All are based on the differences in the properties of isotopes and their compounds resulting from the differences in mass of their atoms. The relative differences in mass of the isotopes are fairly small for most elements. Therein lies the complexity of the task.

The effectiveness of isotope separation is characterized by the separation factor . For a mixture of two isotopes, = [C/ (1 - C)]/[C/(1 C)], where C and (1 - C) are the relative contents of the light and heavy isotopes, respectively, in the enriched mixture and C and (1 C) are the corresponding quantities in the starting mixture. For most methods, a is only slightly greater than unity, and therefore to obtain a high final isotopic concentration requires multiple repetitions of the single stage of isotope separation. Only electromagnetic separation is characterized by an a value of 101,000 per separation cycle. Selection of the method of isotope separation depends on such considerations as the properties of the substance to be separated, the required degree of separation, the desired isotope quantity, and the cost of the process (at high volumes of isotope production).

Gaseous diffusion. In the gaseous diffusion method, a gaseous compound of the element being separated is pumped at the rather low pressure of ~ 0.1 N/m2 (~ 10~3 mm Hg) through a porous membrane containing up to 106 openings per cm2. Light molecules penetrate the membrane faster than heavy molecules, since the velocities of the molecules are inversely proportional to the square root of their molecular weights. Consequently, the gas is enriched in the light component on one side of the membrane and in the heavy component on the other side. If the difference in molecular weights is very small, this process must be repeated thousands of times. The number of stages of separation n is determined by the relationship q = , where q is the required degree of separation. The operation of huge gaseous diffusion plants for the production of U from gaseous UF6 ( ~ 1.0043) is based on this method. Production of the required 235U concentration makes it necessary to perform about 4,000 individual stages of separation.

Diffusion in a vapor stream (countercurrent mass diffusion). In this method, the isotope separation is conducted in a cylindrical vessel (column), divided vertically by a diaphragm. The diaphragm contains about 103 openings per cm3. The gaseous isotope mixture moves against a stream of secondary vapor. Owing to the concentration gradients of the gas and vapor within the cylinder cross section and the greater coefficient of diffusion for the light molecules, the gas, which has passed through the stream of vapor into the left-hand part of the cylinder, is enriched by the light isotope. The enriched portion is withdrawn from the upper end of the cylinder with the bulk of the vapor, and the gas remaining in the right-hand half moves along the diaphragm and is withdrawn from the apparatus. Vapor that has penetrated into the right-hand part is condensed. The isotopes of neon, argon, carbon, krypton, and sulfur are separated on a laboratory scale (up to 1 kg) using separators consisting of several dozen sequentially connected diffusion columns with vaporizing liquids, such as mercury or xylene.

Thermal diffusion. A thermal diffusion separation column consists of two vertical concentric pipes heated to different temperatures. The mixture to be separated is introduced into the space between the pipes. The temperature drop A T between the surfaces of the pipes generates a diffusion flux, which leads to a difference in the concentration of the isotopes in the cross section of the column. At the same time, the temperature drop leads to the generation of vertical convection flows of gas. Consequently, the lighter isotopes concentrate near the heated inner pipe and move upward. The separation coefficient = 1 + (T/T), where is the thermal diffusion constant, which is dependent on the relative difference in mass of the isotopes, and T = (T1 + T2)/2.

The thermal diffusion method makes it possible to separate isotopes in both the gas and liquid phases. The variety of isotopes that may be separated by this method is greater than the separations possible by gaseous diffusion or diffusion in a stream of vapor. However, is small for the liquid phase. The simplicity of this method and the absence of vacuum pumps, among other features, make it a convenient method to use when separating isotopes under laboratory conditions. This method has yielded He containing 0.2 percent 3He (the natural abundance of this isotope is 1.5 X 10 5 percent), as well as the isotopes l80, 15N, 13C, 20Ne,22Ne, 35C1, 84Kr, and 86Kr in concentrations greater than 99.5 percent. Thermal diffusion was used on an industrial scale in the USA for the preliminary enrichment of 235U prior to the final separation of this isotope in an electromagnetic installation. The thermal diffusion plant consisted of 2,142 columns measuring 15 m high.

Distillation (fractional distillation). Since, as a rule, liquid isotopes have different saturated vapor pressures, for example, P1 and p2, and different boiling points, it is possible to separate isotopes by fractional distillation. Distilling columns with a large number of separation stages are used; a depends on the ratio P1/P2and its value decreases with increasing molecular weight and temperature. For this reason the process is most effective at low temperatures. Distillation has been used in the preparation of isotopes of light elements, such as 10B, B, 18O, 15N, and 13C, as well as in the production of hundreds of tons of heavy water per year.

Isotope exchange. Isotope separation can also be carried out by chemical reactions in which the isotopes of the element undergoing separation change places. Thus, for example, if hydrogen chloride HC1 is brought into contact with hydrogen bromide HBr, both of which have the same initial content of deuterium D, the exchange reaction will result in a D content of HC1 that is several times higher than that of HBr. The use of several stages leads to the production of hydrogen, nitrogen, sulfur, oxygen, carbon, and lithium highly enriched in the individual isotopes.

Centrifugation. In a centrifuge rotating with a high peripheral speed (100 m/sec), the heavier molecules are concentrated near the periphery and the lighter molecules near the rotor. The stream of vapor in the outer part with the heavy isotope is directed downward, and the flow in the inner part with the light isotope is directed upward. Connecting several centrifuges in a cascade leads to the desired isotope enrichment. During centrifugation, a depends on the difference in atomic mass of the isotopes being separated rather than on the ratio of the masses. For this reason, centrifugation is suitable for separating the isotopes and heavy elements. Owing to the existence of improved centrifuges, this method has found applications in the industrial separation of the isotopes of uranium and other heavy elements.

Electrolysis. During the electrolysis of water or of aqueous solutions of electrolytes, the hydrogen evolved at the cathode contains less deuterium than the initial water. As a result, the concentration of deuterium increases in the electrolytic cell. This method has been used for the industrial production of heavy water. The separation of other isotopes of light elements (lithium, potassium) by the electrolysis of their chlorides is performed only in laboratory quantities.

Electromagnetic process. In the electromagnetic method, the substance whose isotopes are to be separated is placed in a crucible of an ion source and is evaporated and ionized. The ions are extracted from the ionization chamber by a strong electric field, and combined into a beam of ions; they then enter a vacuum separation chamber placed in a magnetic field H, oriented perpendicularly to the motion of the ions. Under the influence of the magnetic field, the ions travel in circular paths with radii of curvature that are proportional to the square root of the ratio of the ion mass M to its charge e. This leads to differences in the radii of the paths of the heavy and light ions. It is therefore possible to collect ions of various isotopes in collectors located in the focal plane of the installation.

The productivity of electromagnetic installations is determined by the magnitude of the ion current and the effectiveness of collecting the ions. In large installations the ion current varies from tens to hundreds of mA, which makes it possible to isolate up to several grams of isotopes per day (total of all isotopes). The productivity is lower in laboratory separators by a factor of 10100.

The electromagnetic method is characterized by large a and by the possibility of the simultaneous separation of all isotopes of a given element. Usually, at large industrial installations a ~ 10100 per stage, and in laboratory installations a is 10 to 100 times greater. In most cases, a single electromagnetic stage of separation is adequate; the repeated separation of previously enriched isotopic materials to obtain isotopes of extremely high purity is rarely done. The principal drawbacks of this method are relatively low productivity, high operating cost, and considerable losses of the separated material.

The electromagnetic method has made it possible to prepare kilogram quantities of 235U for the first time. The electromagnetic plant in Oak Ridge, Tenn. (USA), included 5,184 separation chambers called calutrons. Owing to their high universality and flexibility, electromagnetic installations are used for the separation of about 50 elements of the periodic system in quantities ranging from several milligrams to hundreds of grams and are the principal source of isotopes for scientific research and some practical applications.

Laboratory separators, like the large electromagnetic separation installations for industrial isotope production, have also found numerous applications. The laboratory separators are used in the preparation of radioactive isotopes, which are necessary for nuclear spectroscopy and for studies of the interaction between ions and solids (in ion implantation as well as for other purposes).

Other methods. In addition to the methods listed above, there are a number of other methods whose applications are limited or which are in the process of being developed or improved. These methods include preparation of 3 He based on the phenomenon of superfluidity of 4 He; separation by diffusion in a supersonic gas stream, which expands in a space with a decrease in pressure; chromatographic separation based on differences in the adsorption rates of isotopes; and biological separation methods.

Summary. The methods of isotope separation possess certain features that determine the areas of their mostefficient application. In the separation of light elements with mass numbers of about 40, distillation, isotope exchange, and electrolysis are the most economical and effective. Diffusion, centrifugation, and the electromagnetic method are used in the separation of the isotopes of heavy elements. Gaseous diffusion and centrifugation can, however, be used, if gaseouscompounds of these elements are available. Since such compounds are scarce, the real potential of these methods is limitedThermal diffusion permits the separation of isotopes in both the gas and liquid states, but a is small for the separation ofisotopes in the liquid phase. The electromagnetic method is characterized by high a, but it has low productivity and is used mainly in the production of isotopes on a moderate scale.

In order to provide for the scientific study and practical uses of isotopes, the State Fund of Stable Isotopes was created in the USSR. The fund contains reserves of isotopes of almost all the elements. Considerable quantities of deuterium, 10B, 13C, 15N, l8O, 23Ne, and other isotopes are regularly produced. The production of various chemical compounds labeled with stable isotopes has also been set up.

The physical separation of different isotopes of an element from one another. The different isotopes of an element as it occurs in nature may have similar chemical properties but completely different nuclear reaction properties. Therefore, nuclear physics and nuclear energy applications often require that the different isotopes be separated. However, similar physical and chemical properties make isotope separation by conventional techniques unusually difficult. Fortunately, the slight mass difference of isotopes of the same element makes separation possible by using especially developed processes, some of which involve chemical industry distillation concepts.

Isotope separation depends on the element involved and its industrial application. Uranium isotope separation has by far the greatest industrial importance, because uranium is used as a fuel for nuclear power reactors. The two main isotopes found in nature are 235U and 238U, which are present in weight percentages (w/o) of 0.711 and 99.283, respectively. In order to be useful as a fuel the weight percentage of 235U must be increased to between 2 and 5. The process of increasing the 235U content is known as uranium enrichment, and the process of enriching is referred to as performing separative work. See Nuclear fuels, Nuclear reactor

The production of heavy water is another example of isotope separation. Heavy water is obtained by isotope separation of light hydrogen (1H) and heavy hydrogen (2H) in natural water. Heavy hydrogen is usually referred to as deuterium (D). All natural waters contain 1H and 2H, in concentrations of 99.985 and 0.015 w/o, respectively, in the form of H2O and D2O (deuterium oxide). Isotope separation increases the concentration of the D2O, and thus the purity of the heavy water.

The development of laser isotope separation technology provided a range of potential applications from space-flight power sources (238Pu) to medical magnetic resonance imaging (13C) and medical research (15O).

The isotope separation process that is best suited to a particular application depends on the state of technology development as well as on the mass of the subject element and the quantities of material involved. Processes such as electromagnetic separation, thermal diffusion, and the Becker Process which are suited to research quantities of material are generally not suited to industrial separation quantities. However, the industrial processes that are used, gaseous diffusion, gas centrifugation, and chemical exchange, are not suited to separating small quantities of material. See Centrifugation

Three experimental laser isotope separation technologies for uranium are the atomic vapor laser isotope separation (AVLIS) process, the uranium hexafluoride molecular laser isotope separation (MLIS) process, and the separation of isotopes by laser excitation (SILEX) process. The AVLIS process, which is more experimentally advanced than the MLIS and SILEX processes, exploits the fact that the different electron energies of 235U and 238U absorb different colors of light (that is, different wavelengths). AVLIS technology is inherently more efficient than either the gaseous diffusion or gas centrifuge processes. It can enrich natural uranium to 235U in a single step. In the United States, the AVLIS process is being developed to eventually replace the gaseous diffusion process for commercially enriching uranium. See Laser

All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.

electromagnetic lock from wikipedia - magnets by hsmag

electromagnetic lock from wikipedia - magnets by hsmag

An electromagnetic lock, magnetic lock, or maglock is a locking device that consists of an electromagnet and an armature plate. There are two main types of electric locking devices. Locking devices can be either fail safe or fail secure. A fail-secure locking device remains locked when power is lost. Fail-safe locking devices are unlocked when de-energized. Direct pull electromagnetic locks are inherently fail-safe. Typically the electromagnet portion of the lock is attached to the door frame and a mating armature plate is attached to the door. The two components are in contact when the door is closed. When the electromagnet is energized, a current passing through the electromagnet creates a magnetic flux that causes the armature plate to attract to the electromagnet, creating a locking action. Because the mating area of the electromagnet and armature is relatively large, the force created by the magnetic flux is strong enough to keep the door locked even under stress.

Typical single door electromagnetic locks are offered in both 600 lbs.(272kg) and 1200 lbs. (544kg) dynamic holding force capacities. A fail safe magnetic lock requires power to remain locked and typically is not suitable for high security applications because it is possible to disable the lock by disrupting the power supply. Despite this, by adding a magnetic bond sensor to the lock and by using a power supply that includes a battery backup capability, some specialized higher security applications can be implemented. Electromagnetic locks are well suited for use on emergency exit doors that have fire safety applications because they have no moving parts and are therefore less likely to fail than other types of electric locks, such as electric strikes.

The strength of todays magnetic locks compares well with that of conventional door locks and they cost less than conventional light bulbs to operate. There are additional pieces of release hardware installed in a typical electromagnetic locking system. Since electromagnetic locks do not interact with levers or door knobs on a door, typically a separate release button that cuts the lock power supply is mounted near the door. This button usually has a timer that, once the button is pressed, keeps the lock unlocked for either 15 or 30 seconds in accordance with NFPA fire codes. Additionally a second release is required by fire code. Either a motion sensor or crash bar with internal switch is used to unlock to door on the egress side of the door automatically.

The first modern direct-pull electromagnetic lock was designed by Sumner Irving Saphirstein in 1969 for initial installation on doors at the Montreal Forum. Fire concerns by local authorities in locking the doors at the Forum prompted management to find a locking solution that would be safe during a fire incident. Saphirstein initially proposed to use a linear stack of door holders to work as an electromagnetic lock. These door holders were traditionally used to hold doors open, but in this application Saphirstein believed that they could be packaged and adapted to work as a fail-safe lock. After a successful prototype and installation at the Forum, Saphirstein continued evolving and improving the design and established the Locknetics company to develop accessories and control circuits for electromagnetic locks.

Under difficult business conditions, Locknetics was later sold to the Ives Door Hardware company and later, resold to the Harrow company.[citation needed] Much later this division was then again sold to Ingersoll Rand Security Technologies. The division was recently closed and transferred to other divisions within Ingersoll Rand Security. Employees that were associated with activities at Locknetics, went on to form other electromagnetic lock companies, including Dynalock Corporation and Security Engineering Co.

Saphirstein continued developing electromagnetic locking technologies at other companies he initiated including Dortronics (later purchased by Sag Harbor Industries), Delta Controls (first purchased by the Lori Lock Company and then later purchased by Hanchett Entry Systems) and Delt-Rex Door Controls, all of which were located in Connecticut. Other engineers also left these companies to form their own manufacturing firms in electronic locking, including Highpower Security Products LLC in Meriden, Connecticut. Many other firms in both the U.S., Canada, and throughout Asia were later established to create additional product offerings for the direct-pull electromagnetic lock.

The principle behind an electromagnetic lock is the use of electromagnetism to lock a door when energized. The holding force should be collinear with the load, and the lock and armature plate should be face-to-face to achieve optimal operation.

The magnetic lock relies upon some of the basic concepts of electromagnetism. Essentially it consists of an electromagnet attracting a conductor with a force large enough to prevent the door from being opened. In a more detailed examination, the device makes use of the fact that a current through one or more loops of wire (known as a solenoid) produces a magnetic field. This works in free space, but if the solenoid is wrapped around a ferromagnetic core such as soft iron the effect of the field is greatly amplified. This is because the internal magnetic domains of the material align with each other to greatly enhance the magnetic flux density.

Magnetic locks possess a number of advantages over conventional locks and electric strikes. For example, their durability and quick operation can make them valuable in a high-traffic office environment where electronic authentication is necessary.

Remote operation: Magnetic locks can be turned on and off remotely by adjusting the power source. Easy to install: Magnetic locks are generally easier to install than other locks since there are no interconnecting parts. Quick to operate: Magnetic locks unlock instantly when the power is cut, allowing for quick release in comparison to other locks. Sturdy: Magnetic locks may also suffer less damage from multiple blows than do conventional locks. If a magnetic lock is forced open with a crowbar, it will often do little or no damage to the door or lock. There are no moving parts in an electromagnetic lock to break.

Requires a constant power source in order to be secure. Can de-energize in the event of a power outage, disabling security. Expensive in comparison to mechanical locks. Requires additional hardware for safe operation.

The magnetic lock is suitable for both in-swinging and out-swinging doors. Brackets (L bracket, LZ bracket, U bracket) are used to orient the armature for use with both applications. Filler plates are also used to provide a large, flat mounting area on the door frame when the electromagnet is larger than the available mounting space on the door frame due to the frames geometry.

The magnetic lock should always be installed on the secure side of the door. Most installations are surface mounted. For safety, magnetic lock, cables, and wires should be routed through the door frame or flush mount with wire moulding.

Installation is straightforward. With in-swinging applications, the electromagnet is typically installed in the opening corner of the door at the doors header. Maglocks can also be installed vertically in the door opening when they are furnished with a full length housing. With this configuration the armature is through-bolted through the door and oriented to mate with the face of the electromagnet. The armature plate and electromagnet must touch in order to provide locking holding force.

With out-swinging applications, the electromagnet is typically installed on the side of the door header. In this configuration, the armature is mounted on a Z shaped bracket that orients the armature to mate with the electromagnet.

Magnetic locks are almost always part of a complete electronic security system. Such a system may simply consist of an attached keycard reader or may be more complex, involving connection to a central computer that monitors the buildings security. Whatever the choice of locking system, fire safety is an important consideration.

Other variations and improvements on the electromagnetic locks have been developed. The most remarkable is the shear lock, where the armature does not directly pull off the face, but the load is instead in shear, like a mechanical stop. The shear magnetic lock allows a door to swing in both directions, as opposed to the original (and now ubiquitous) direct pull type, which normally works either in an in-swing or out-swing configuration. In order to provide the shear magnetic lock with the appropriate holding force, then two pins lock the armature onto the magnet itself, and ensure that the magnet locks into place.

An improved shear electromagnetic lock was patented on May 2, 1989, by Arthur, Richard and David Geringer of Security Door Controls, an access control hardware manufacturing firm. The device outlined in their designs was the same in principle as the modern magnetic lock consisting of an electromagnet and an armature plate. The patent did not make any reference to the manufacturing methods of the electromagnet and detailed several variations on the design, including one that used a spring-loaded armature plate to bring the armature plate closer to the electromagnet. The patent expired on May 2, 2009.

Micro Size: 275 lbf (1,220 N) holding force. Mini Size: 650 lbf (2,900 N) holding force Midi Size: 800 lbf (3,600 N) holding force Standard Size: 1,200 lbf (5,300 N) holding force. Shear Lock: 2,000 lbf (8,900 N) holding force

The power for an electromagnet lock is DC (Direct Current), around 5-6 W. The current is around 0.5 A when the voltage supply is 12VDC and .25A when using 24VDC (keeping in mind that each manufacturer is different and if there are one or two coils in the block). Also this information varies based upon the origins of the product. It is also suggested that you verify that the magnetic lock carries the UL mark. Generally, the specification of the electromagnet lock is dual voltage of 12/24 VDC. If using a rectifier to convert AC power, you must use a full wave bridge rectifier.

Fail-safe to protect people: The lock is released if power cuts off. Fail-secure (also known as non fail safe) to protect property: The lock remains closed if power cuts off. This type of lock has a cylinder, similar to those found in conventional locks. The cylinder makes it possible for the lock to remain secure, even if the power supply is cut off.

Magnetic Lock Holding Force Access Control,Double Door Magnetic Lock (1200 lbs*2),Electromagnetic Magnetic Door Lock 500KG*2 Holding Force Access Control Sytem, Electromagnetic Locking Systems,1200 lbs*2Holding Force Access Control Holding Force Access Control Magnetic Lock part no.: HS-EML-500D double door magnetic lock is for heavy door, such as metal door, wooden door, fireproof door, sliding door and []

LED Maglocks, 1200LBSLED Single Output Maglocks,Single Door Electric Magnetic Lock, 12V / 24 V Electromagnetic Electric Magnetic Door Lock,Electric Maglocks withSingle Output,Single Door Magnetic Lock with Signal Output (LED) (1200 lbs) Maglocks with LED HS-EML-KM-500(LED) single door magnetic lock is for heavy door, such as metal door, wooden door, fireproof door, sliding door and so []

1200lbs Magnetic Lock,1200lbs Single Door Magnetic Lock,Single Door Electric Magnetic Lock,Electromagnetic Lock Holding Force Access Control, Electromagnetic Locking/Maglocks, 500kg Single Door Fail Safe Magnetic Lock 1200lbs Magnetic Lock HS-EML-500 single door magnetic lock is for heavy door, such as metal door, wooden door, fireproof door, sliding door and so on. Accessories for inswing door,frameless glass []

Single Door Mag Lock with Waterproof and Signal Output, 1200lbsDurableSingle Door Mag Lock,Single Door Electric Mag Lock,Waterproof and Signal OutputMagnetic Lock 500kg holding force Single Door Mag LockHS-EML-500W-S single door magnetic lock with waterproof function and signal output, the case is stainless steel and it is 100% waterproof treatment. All the accessories are sealed inside []

1200 lbs Waterproof Electromagnetic Lock,500Kg Holding ForceElectromagnetic Lock,WaterproofSingle Door Magnetic Lock,Electromagnetic Door Lock, Electric Mag Lock Waterproof Electromagnetic Lock 1200 lbs Holding Force HS-EML-500W single door magnetic lock with waterproof function, the case is stainless steel and it is 100% waterproof treatment. All the accessories are sealed inside the lock cylinder. Specially for metal door, []

Waterproof Single Door Electromagnetic Lock with Signal Output,800lbsSignal OutputWaterproof Electromagnetic Lock, Single Door Magnetic Lock(Waterproof), 350kgWaterproofElectric Magnetic Lock Single Door Electromagnetic Lock with Signal Output Waterproof:HS-EML-350W-S single door magnetic lock with waterproof function, the case is stainless steel and it is 100% waterproof treatment. All the accessories are sealed inside the lock cylinder. Specially for []

Waterproof Single Door 800lbs Magnetic Lock,100% WaterproofSingle Door Electric Magnetic Lock,Electromagnetic Single Door Lock, 350kg Holding ForceElectromagnetic 12/24v Home Office Warehouse Gate Door Lock 800lbs Magnetic Lock Waterproof Single Door; HS-EML-350W single door magnetic lock with waterproof function, the case is stainless steel and it is 100% waterproof treatment. All the accessories are sealed inside []

Signal Output and Mortise Mount Electric Mag Lock,Waterproof Single Door Magnetic Lock with Signal Output (Mortise Mount),800 lbsSignal Output and Mortise Mount MagLock, 350kgElectric Mag Lock with LED andMortise Mounted Electric Mag Lock with Signal Output and Mortise Mount : HS-EML-350M-S single door magnetic lock with mortise mount is for glass door, wooden door, fireproof []

800lbs Mortise Mount Electric Lock,Waterproof Single Door Magnetic Lock (Mortise Mount),800lbsElectric Magnetic Lock, 350kgMortise Mounted Magnetic Lock,Electric Locking Mortise Mount Electric Lock (800lbs or 350kg holding force) :HS-EML-350M single door magnetic lock with mortise mount is for glass door, wooden door, sliding door, metal door and small size door etc, easy to install. Accessories for []

Electromagnetic Double Door Lock with Buzzer LED Time, Double Door Magnetic Lock with Buzzer, Signal Output & Time Delay,800 lbs*2Magnetic Double Door Lock, 350KG*2 Double Door Electric Lock with Buzzer Electromagnetic Double Door Lock Buzzer LED Time : HS-EML-350DBZ middle size double door magnetic lock is suitable for wooden door, fireproof door, sliding door and []

800lbs Electromagnetic Locking,350kg Holding ForceElectromagnetic Locking System,Electromagnetic and Electromechanical Lockswith Buzzer, Signal Output & Time Delay,Electric Single DoorLocking,800lbs Single DoorElectromagneticLocks Electromagnetic Locking 800lbs holding magnetic force: HS-EML-350BZ Single door magnetic lock with buzzer and suitable for wooden door, fireproof door, sliding door and metal door and so on. When set up 1-30 as door close []

Magnetic Double Door Lock with LED & Time, Double Door Magnetic Lock with Signal Output & Time Delay (LED & Time),800 lbs*2 Holding ForceMagnetic Double Door Lock,Signal Output & Time DelayDouble Door Electric Magnetic Lock Magnetic Double Door Lock with LED & Time:HS-EML-350TD(LED) Doubledoor magnetic lock is for glass door, wooden door, fireproof door, sliding []

wet high intensity magnetic separator, dry drum magnetic separator, magnetic separator suppliers - longi magnet co., ltd

wet high intensity magnetic separator, dry drum magnetic separator, magnetic separator suppliers - longi magnet co., ltd

Thailand has plenty of river sand resource which is high quality of silica sand, upto 99.6% SiO2. In the northest, the river sand had been proved that the high iron contaimination Fe2O3 upto 0.165% can be lowered down to 0.065% by high gradient magnetic separation technology.

Recycling aluminum refers to the scrap aluminum as the main raw material to obtain aluminum alloy after pretreatment, smelting, refining, and ingot casting. Aluminum has features of strong corrosion resistance, low loss during use, and will not lose its basic characteristics after repeated recycling for many times, and has extremely high recycling value.

Wet magnetic separation is widely used in the purification of quartz sand, which has the characteristics of significant iron removal effect, large handling capacity and no dust pollution. In the primary stage of quartz sand purification, wet magnetic separation is generally considered to be an excellent way of iron removal purification, but in the stage of high-purity quartz cleaning, the conventional wet magnetic separation purification effect is not obvious, the reasons can be summarized as three points.

LONGi magentic separator bring hot sales, recently,RCBD flame-proof electromagnetic separator in addition with excellent iron removel performance, excellent heat dissipation efficiency and perfect service guarantee ability successfully won the bid for the domestic leading coal enterprises, a total of 39 sets, lay a good foundation for the market follow-up development.

Related Equipments