grate kiln iron ore pelletizing plant manufactuter in china

grate kiln system - metso outotec

grate kiln system - metso outotec

Grate Kiln systems consist of three major pieces of equipment. The Grate, the Kiln and the Cooler. The object of the process is to transform the pelletized concentrate into hardened pellets that can be used as blast furnace feed or direct reduction furnace feed.

The Travelling Grate is where pellets are dried and then heated up to a temperature of about 800-900 deg C. The heat used to dry and preheat the pellets is typically hot air pulled from the Kiln and cooler. The recycling of the the hot air from the different zones increases energy efficiencies.

In the Kiln, pellets are brought up to final indurating temps. Rotation of kiln exposes entire pellet bed to heat radiating from the burner resulting in uniform pellet quality. The kiln burner utilizes cooler off gas to heat material bed to nominal of 1200-1340 C completing the slag bonding and mineral bridging to form pellets.

In the Cooler, pellets are brought down to a suitable temperature for downstream material handling equipment. The gases from the cooler are recycled to the kiln and the grate, resulting in the Grate-Kiln being the most energy efficient system for producing indurated pellets.

The traveling grate is comprised of a blanket of plates connected into a chain that carries the pellets similar to a conveyor. The difference is that the plates in the grate chain have holes in them that allows air to pass through it. The grate chain travels flat and straight. The grate travels through a furnace with several zones that expose the pellets to different temperatures. Once the pellets are discharged into the kiln, the grate chain returns underneath. The grate is driven by a motor with gearbox or hydraulic drive. The grate is supported by rollers.

The final induration of the pellet is accomplished in a rotary kiln, wherein the principal heat transfer mechanism is radiation from the system's main burner.The process system is designed so that material transfer from the grate to the kiln occurs when the material on the grate is sufficiently preheated to have the requisite indurate strength for subsequent processing in the rotary kiln.A rotary kiln is a steel round shell with refractory lining that rotates. This shell is rotated by a drive gear and electric or hydraulic drive system. The shell is supported on large bearings. There is a single large burner that heats the pellets up as they travel through the kiln.

An annular cooler is a turntable that holds the hot pellets. Ambient air is blown through the hot pellets. The turntable is made of wedge shaped pans. The pellets fall out of the kiln directly onto the pans. The pellets travel all around the turntable until the pan is tipped and the pellets fall underneath. The pan is then righted to accept more material. The cooler pans are supported by rollers.

iron ore pelletisation plant, using the grate kiln process goodrich magma industrial technologies limited

iron ore pelletisation plant, using the grate kiln process goodrich magma industrial technologies limited

There are two major processes for the production of iron ore pellets straight grate & grate kiln. Straight grate plants are expensive & suited for large scale production. Grate kiln plants are economical and suited for medium scale production.

GoodRich offers iron ore pelletisation plants from a reputed manufacturer in China, based on the grate kiln technology. The plants are available in capacities from 100,000 tons to 1,200,000 tons per annum. The Chinese company has already supplied 8 pellet plants in India.

In the grate kiln process, a chain grate system is used for drying & pre-heating the green balls to be fed into the rotary kiln, where they are indurated. The pellets are finally cooled in a circular cooler.

Iron ore pellets are being increasingly favoured in modern blast furnaces. The proportion of pellets in iron making is increasing due to their properties such as higher density, uniform granularity, good reductability, etc.

Pellet is a good material for sponge iron making also. When used in the rotary kiln, pellets reduce the iron ore requirement to 1.45 tons per ton of sponge; reduce the travelling time & increase the sponge output by 20-25%. They also reduce the coal consumption by 15-20% & improve the metallization rate to 86-88%. Hence, they are sold at a premium price in the domestic market.

iron ore pelletizing process: an overview | intechopen

iron ore pelletizing process: an overview | intechopen

Open Access is an initiative that aims to make scientific research freely available to all. To date our community has made over 100 million downloads. Its based on principles of collaboration, unobstructed discovery, and, most importantly, scientific progression. As PhD students, we found it difficult to access the research we needed, so we decided to create a new Open Access publisher that levels the playing field for scientists across the world. How? By making research easy to access, and puts the academic needs of the researchers before the business interests of publishers.

We are a community of more than 103,000 authors and editors from 3,291 institutions spanning 160 countries, including Nobel Prize winners and some of the worlds most-cited researchers. Publishing on IntechOpen allows authors to earn citations and find new collaborators, meaning more people see your work not only from your own field of study, but from other related fields too.

The iron ore production has significantly expanded in recent years, owing to increasing steel demands in developing countries. However, the content of iron in ore deposits has deteriorated and low-grade iron ore has been processed. The fines resulting from the concentration process must be agglomerated for use in iron and steelmaking. This chapter shows the status of the pelletizing process with a special focus on binders. Bentonite is the most used binder due to favorable mechanical and metallurgical pellet properties, but it contains impurities especially silica and alumina. The importance of many researches concerning alternative binders is also discussed in this chapter. Better quality wet, dry, preheated, and fired pellets can be produced with combined binders, such as organic and inorganic salts, when compared with bentonite-bonded pellets. While organic binders provide sufficient wet and dry pellet strengths, inorganic salts provide the required preheated and fired pellet strengths.

Iron ore and iron ore pellets are important sources of iron for manufacturing steel. The iron ore production has significantly expanded in recent years, owing to increasing steel demands in developing countries, such as China and India. However, the content of iron ore in deposits has deteriorated and low-grade iron ore has been processed. The fines resulting from the enrichment by separation after liberation by size reduction must be agglomerated in a pelletizing plant. Consequently, the number of pelletizing plants is expected to increase in the future.

The quality requirements of pellet, such as physical, chemical and metallurgical specifications, depend on each ironmaking furnace and those requirements influence the operation of the iron ore pelletizing plant.

The idea of rolling moist fine ore in a drum to form balls and then drying and firing it was first patented by A. G. Andersson in Sweden in 1912. Further development was performed to bring the idea to reality. In 1943, E. W. Davies and co-workers demonstrated the process using an experimental shaft furnace. Commercial operation started in the 1950s in Sweden using vertical-shaft-kilns for firing the pellets. Plant capacities were between 10,000 and 60,000 tons/year [1].

The world installed pelletizing capacity is currently estimated to be 480.7 million tons/year [2]. As shown in Figure 1, China presents the largest production capacity, followed by the United States and Brazil.

The iron ore pelletizing process consists of three main steps:Pelletizing feed preparation and mixing: the raw material (iron ore concentrate, additivesanthracite, dolomiteand binders are prepared in terms of particle size and chemical specifications, dosed, and mixed together to feed the pelletizing process;Balling process: the green pellet is the rolled pellet without any thermal process. It is obtained under strict control of moisture and has a spherical shape and diameter of 816mm;Induration process: the green pellets are hardened in a high temperature processing at controlled heating rates, and aiming to achieve the physical and metallurgical requirements for handling, transportation, and final application.

Pelletizing feed preparation and mixing: the raw material (iron ore concentrate, additivesanthracite, dolomiteand binders are prepared in terms of particle size and chemical specifications, dosed, and mixed together to feed the pelletizing process;

Induration process: the green pellets are hardened in a high temperature processing at controlled heating rates, and aiming to achieve the physical and metallurgical requirements for handling, transportation, and final application.

This chapter aims to provide an overview and the evolution of iron ore pelletizing process including:Pelletizing process and raw materialsBalling technologiesBonding mechanismsEvolution of binders for iron ore pelletizingInduration technologiesChallenges and innovations in iron ore pelletizing

The iron ore is mined mostly from open pit deposits through mining operations and the raw product, run of mine, is subjected to mineral processing. Thus, the material is exposed to a series of operations of fragmentation, separation by size, concentration, dewatering, etc., aiming to adequate the chemical, physical, and metallurgical characteristics to meet the demands of ironmaking processes. The particle size distribution of iron ore is a very important requirement to be characterized after its mineral processing.

Materials containing a very fine particle size distribution are not adequate to be used directly in the reduction reactors, requiring to be agglomerated by different processes such as sintering or pelletizing.

The main used reduction reactors are the blast furnace (BF) and direct reduction reactors (DR). In the blast furnace, iron is reduced and melted and the most common product is liquid iron called hot metal. In direct reduction, iron remains in solid state and the product is the so-called direct reduced iron (DRI).

Pellets are balls formed by rolling moist concentrates and fines iron ores of different mineralogical and chemical composition, with the addition of additives and binder, in a horizontal drum or in an inclined disc [1, 4].

Pellets produced to be used in ironmaking processes must have characteristics that meet the list of quality specifications regarding physical, chemical, and metallurgical properties. Almost all of those properties are standardized as shown in Table 2.

Aiming to achieve those specifications, binders and additives are used in the pelletizing process. Additives such as limestone, dolomite, and hydrated lime are used to modify the chemical composition of the pellets, most often for correction of the basicity.1 Certain substances such as hydrated lime serve as both additive and binder. Fines of anthracite or coke are also added during the pelletizing process for reducing the consumption of fuel required for internally heating the ball [7].

Pellets are obtained by adding an appropriate amount of water to the iron ore concentrate; this is a fundamental factor in the formation and growth of pellets, which creates a surface tension that holds the mineral grains cohesive, thus allowing their handling [6, 8].

This cohesive tension of fine particles due to water is called neutral tension. Neutral tension, however, is not sufficient to keep cohesive grains as dense as iron minerals. Furthermore, when the pellet is heated, the vaporization of water occurs and the pellets tend to disintegrate.

To avoid such effects, binders are added to the material to be pelletized, aiming to:increase the strength of pellets before heating (green strength);prevent the collapse of pellets during the initial stages of heating, when a large volume of gas generated by water vaporization tends to crack the pellets.

Evenly distributed moisture and binder in the feeding process is decisive to improve the characteristics of pellets, especially to avoid the formation of undesirable agglomerates before the pellet formation.

However, bentonite incorporates silica and alumina, which are undesirable contaminants to pellets. Additionally, it is a natural material with variable composition depending on its origin. Obtaining a suitable binding effect requires a relatively large amount of material, around 0.5% by weight, which makes handling more difficult and increases logistics costs.

Figure 2 shows a flowchart of a typical pelletizing plant, highlighting the additive preparation, mixing and pelletizing feed preparation, the balling step, in this case using a disc pelletizer, and the induration step.

Figure 3 schematically shows a laboratory disc pelletizer. The balling disc basically consists of a pan with a peripheral wall, which rotates with a certain inclination to the horizontal [1]. In general, in a balling disc, the pan angle can be adjusted between 40 and 60 [11].

When the disc rotates, the feed material with less moisture than that required for the pellets formation, is charged to the bottom of the disc, where it get in contact with the water from the sprayers, initiating the nucleation stage. At this stage, the nuclei begin to take the form of small pellets, which by rolling action, occur in the lower section, to the left of the disc, toward the top. As the added ore aggregates unto the surface of the pellets, they increase in size and the coefficient of friction is reduced causing the pellets to acquire a centrifugal force that carries them out of the nucleation zone. This movement takes the pellets to the top of the disc following a semicircular trajectory before returning to the base of the disc [1, 12].

The height and width of the trajectory increase as the ball size increases until the balls hit the scraper blades. After that, they move down and pass under the water sprayers so that they can find fresh feed.

The balling drum equipment fundamentally consists of an inclined rotating cylindrical shell with water sprays in its inlet end, where the feed material is introduced to make balls. All formed pellets are discharged, regardless of particle size, which is different from the disc where only balls larger than a certain size are discharged. Because of this, the product has to be screened by a roller screen, which has increasingly replaced vibrating screen to extract undersize and oversize [4].

The small pellets in the undersize will serve as seeds forming rightly sized pellets [4], the oversize is shredded, and both return to the feed addition point, forming a closed circuit. The water sprays promote nucleation and seed growth in the feed addition zone, while the assimilation process, responsible for the ball growth, occurs along the length of the drum [1].

The drums usually have a length-to-diameter ratio of 2.53.5 and very low slope with angles of inclination of the drum axis to the horizontal between 6 and 10. The optimum rotating speed is generally between 25 and 35% of the critical speed that is the speed in which balls will centrifuge causing their degradation [1]. Speed control is necessary to develop a correct rolling and tumbling action to produce balls.

The rotation speed, the depth of the material in the drum (controlled by scrappers), and the time required for balling are constraints that need to be satisfied. The residence time in a drum is given by Eq. (1):

The main bonding mechanisms of size enlargement are described as being [11, 13]:solid bridges between agglomerating particles, which may occur by sintering, partial melting, chemical reaction, hardening binders, recrystallization of dissolved substances, and deposition of colloidal particles;interfacial forces and capillary pressure in movable liquid surfaces (liquid bridges);adhesional and cohesional forces in bonding bridges, which are not freely movable (highly viscous binder), adsorption layers <3nm thickness);attraction between solid particles: molecular forces (Van der Walls forces, free chemical bondsvalence forcesassociationsnonvalenceand hydrogen bridges), electric forces (electrostatic, electrical double layers, excess charges), and magnetic forces;interlocking, depending on the shape of particles, for example, fibers, threads, or lamellae.

solid bridges between agglomerating particles, which may occur by sintering, partial melting, chemical reaction, hardening binders, recrystallization of dissolved substances, and deposition of colloidal particles;

attraction between solid particles: molecular forces (Van der Walls forces, free chemical bondsvalence forcesassociationsnonvalenceand hydrogen bridges), electric forces (electrostatic, electrical double layers, excess charges), and magnetic forces;

The agglomerated growth mechanism was defined by Sastry and Fuerstenau [14], considering that in industrial balling systems, the balling devices are continuously operated and the new feed is constantly supplied to previously seed pellets. The authors describe five agglomerate growth mechanisms as shown in Figure 5.

Nucleation (Figure 5a) is defined as any formation of new pellets in an agglomeration system from an extra feed of moist material. The nucleation of new species results from the capillary attraction between a collection of individual moist feed particles. Thus, the occurrence of nucleation promotes changes in the mass and number of well-formed species in the system.

Whenever a new feed is supplied to a pelletizing system, the pellets act as seeds and tend to accumulate the newly added moist material. This mechanism is called snowballing or layering (Figure 5b). In this case, it is considered that all new moist feed nuclei are of unit mass and are not considered to belong to the population of agglomerates undergoing size change. In addition, the snowballing mechanism is considered to cause continuous change in pellet size, resulting in an increase in the total mass of the system and does not change the total number of pellets.

Coalescence (Figure 5c) refers to the production of large-size species through the aggregation of two or more colliding granules. Binary coalescence is considered an elementary event. Thus, the collision coalescence of two agglomerated species leads to the formation of a larger sized pellet with mass. The coalescence mechanism causes discrete changes in the agglomerate mass and contributes to the decrease in the number of pellets, but does not change the total mass of the system.

The breakage of pellets (Figure 5d) leads to the formation of a collection of fragments that are considered to belong to the class of well-formed species. These fragments are redistributed on the surviving pellets, causing the so-called layering according to the layering mechanism.

In the abrasion transfer mechanism (Figure 5e), a certain mass of material is transferred from one species to another due to the interaction and abrasion of the agglomerate during the pelletizing process. Mathematically, it is expected that on each encounter between species, an infinitesimal mass of material will be transferred from one to the other, with no preference of exchange in any direction. The abrasion transfer growth mode does not change the total number or total mass of pellets in the system, causing only continuous changes in size.

The optimum moisture content and particle size distribution are two decisive factors for green pellets formation. The moisture interferes with two important properties of green pellets: compressive strength and drop resistance. These two properties are complementary; to obtain a high compressive strength a lower water addition is necessary, whereas to achieve better resistance to drop the pellet should present higher moisture content [4].

Urich and Han [15] studied the effect of grind on the quality of pellet of specular hematite and found that as the amount of particles smaller than 44m increases, the compressive strength (both green and indurated pellets), abrasion resistance, and other related properties improve considerably.

Binders are used in the pelletizing of iron ore aiming to improve the performance of the process in the following aspects [1, 4, 11, 16, 17]:promoting and facilitating the balling;increasing the green and dry strength of the pellets;preventing the collapse of pellets in the initial stages of heating, when a large volume of gas generated by water vaporization tends to crack pellets;improving the properties of the fired pellets.

Bentonite, an inorganic binder, has been the main binder used in the iron ore pelletizing process since the beginning of pellet production in the 1950s. Bentonite promotes the formation of ceramic bridges between particles, which can minimize the number of pellets that collapse during firing. Despite its low cost, the inorganic compounds from bentonite are contaminants increasing the amount of acid gangue in the pellet. This increases the amount of slag formed in iron and steelmaking, which add to the energy needs of such processes [18].

Organic binders have been used as an attractive alternative to bentonite in iron ore pelletizing process, mainly because it burns without leaving any residue in the final pellet. There are two main types of organic binders, those based on cellulose compounds and other based on polyacrylamide polymers.

Table 3 shows some patents from chemical industries claiming the employment of organic binders in iron ore pelletizing aiming to replace bentonite in the process. The effectiveness of the binders is given in terms of compressive strength of pellets compared with the results from using bentonite.

Regarding research papers, Table 4 lists some publications, which report studies applying organic binders to iron ore pelletizing since the 1980s. All analyzed publications show results of compression strength (green and dry) and drop test from using organic binders. In some cases, the characterization of binders is also presented along with the discussion of their effects on the pellet properties. However, these studies do not explain how organic binders act to improve the properties of the pellets.

There are currently some organic binders available in the market for palletization of iron ore such as Peridur from Akzo Nobel, Alcotac from Basf Corporation, FLOFORM from SNF Floerger, KemPel from Kemira, FLOTICOR PA 8000 from Clariant among others.

The final use of iron ore pellets in ironmaking reactors requires minimum mechanical properties. Pellets must withstand tumbling and falling during transport and mechanical loading inside the reactors due to the charge weight. In order to increase its mechanical strength, green pellets are thermally treated in the induration process.

Pellets undergo drying, firing, and cooling steps. First, the water in the form of moisture is removed from the pellets in the drying steps. There is water in the pores and capillaries of pellets, that is, between different ore particles. In the case of porous ores, water may also be found in the pores of individual grains. Since this type of pores are normally smaller in size than the pellet pores, the temperature required to eliminate this water is expected to be higher. In the industrial process, the maximum temperatures reached in the solid phase during the drying steps are approximately 300C.

After drying, pellets undergo firing steps, at which temperatures may reach 1350C. In these steps, the roasting of all pellets components (ore, limestone, binders, etc.) occurs, liberating chemically bonded water and CO2. Additionally, the sintering of ore grains also happens, leading to the development of mechanical strength. This sintering may be caused by solid state interaction of particles, but also with the presence of liquid phase, which can act as transport media increasing the sintering rate. The liquid phase also acts as bonds among ore particles.

The presence of liquid or semi-liquid phases is more pronounced in fluxed pellets where acid constituents normally from the ore (e.g., SiO2 and Al2O3) may react with basic ones added in the form of fluxes (e.g., CaO and MgO). This reaction may result in the formation of a slag phase. Figure 6 shows the phase diagram of the ternary system Al2O3-CaO-SiO2 at 1200C. At this temperature, liquid phase is present and indicated as ASlag liq. The reaction between iron oxide and fluxes or impurities is also possible. The interaction of CaO with Fe2O3 may lead to the formation of liquid phase below 1250C.

The major development regarding pellet strength occurs at temperatures above 1200C and is caused by the formation of necks between ore grains followed by pellet densification. These mechanisms are typical of solid state sintering. Pellet densification with increase in strength is controlled by the rate of oxygen diffusion in the hematite crystal [28].

Induration processes were initially developed for ores composed of magnetite, since they are oxidized, producing hematite, and generating heat (482.4kJ/mol of Fe3O4). In the case of ores composed of hematite, this heat liberation does not happen and needs to be compensated. For this reason, hematite is agglomerated with controlled amounts of carbon (12% wt.) that burns during induration, generating the required heat. For both cases, heat is induced inside the pellet by the diffusion of hot air through the pores of pellets and subsequent chemical reaction. In the case of magnetite, heat generation is more uniform over the pellet volume, while for hematite it will be concentrated around carbon particles that must be evenly distributed. This is the reason for using very fine solid fuels such as anthracite or coke breeze in the mixture to be agglomerated during balling.

The straight grate process is composed of a single furnace where an endless line of pallet cars moves. A layer of indurated pellets is arranged at the bottom of each car to protect it against the heat. The green pellets are then charged on top of the hearth of indurated pellets. A schematic diagram of this process is shown in Figure 7.

The process is designed to enhance heat recovery. Therefore, two flows of ambient air are heated while cooling the hot indurated pellets. These flows are directed to other zones of the furnace. This is a way of recovering the latent heat present in the hot indurated pellets.

The drying of green pellets is performed in two stages by blowing warm air through the bed of pellets. In the first stage, the hot air from the cooling zone is blown from the bottom. In the second drying stage, hot air from the firing zone is blown on the top of the car. The use of both updraft and downdraft drying ensures a more uniform treatment along the height of the bed of pellets.

The high temperature phase is divided into three steps: pre-heating, firing, and after-firing. In all these phases, pre-heated air is fed into burners to produce flue gases that flow through the bed of pellets from the top. The burners are usually fired with gaseous fuels, such as natural gas or atomized liquid fuels, such as diesel.

Since the hot air flows from the top of the bed in the high temperature steps, firing of pellets is not homogeneous. Pellets close to the top are treated at higher temperatures for longer times, while pellets at the bottom reach lower peak temperatures for shorter residence times. It is been reported [30] that pellets at the top may reach 1300C for 6minutes while pellets at the bottom peak at 1200C with no residence time. These values may vary, but the difference is large enough to generate pellets with different mechanical strengths and different metallurgical proprieties. This is a disadvantage for the straight grate in comparison to the grate-kiln process.

In the grate-kiln process, shown in Figure 8, there are three different reactors. The drying, pre-heating, and cooling steps are similar to that of the straight grate process. The general concept of heat recovery by using hot gases from downstream in the process for drying and for feeding the burners is also present. However, a rotary kiln is used for the firing step.

The pre-heating zone is divided into two steps: tempered pre-heating zone and pre-heating zone, where maximum temperatures may reach between 1000 and 1100C. Pellets need to gain some mechanical strength during pre-heating to withstand the tumbling inside the rotating kiln where firing is performed.

The firing in the rotating kiln generates pellets with more uniform properties. The movement of the kiln causes pellets to mix during the firing treatment and the temperature is more even among different pellets. The furnace is heated with a flame on the discharge side. The use of fuel is more flexible in this case in comparison to the straight grate. Besides gaseous and liquid fuels, solid fuels such as coal may also be used. This is of particular interest in regions with availability of cheap solid fuels.

Therefore, pellets undergo more charging and discharging operations during the grate-kiln process than in the straight grate. This causes a greater generation of fines during the process. However, the final pellet properties are more uniform, and fines generation during transport for final use is therefore expected to be lower for pellets produced in the grate-kiln process.

The properties of iron ore depend much on its genesis. Different ores have distinct characteristics and varying performances in the mining and in the metallurgical processes. Ore particle shape, size, texture and capability of water retention, capillarity and cohesive strength among different particles determine the velocity of pellet growth during balling and pellet porosity. Ore characteristics also influence on the required amount of binder to produce pellets with satisfactorily quality. The use of iron ores with smaller crystal size and less dense structure usually results in pellets with better reducibility, impacting the performance of ironmaking reactors. Therefore, different iron ores should be valued in function of the benefit from their use [3].

The influence of ore characteristics on beneficiation, concentration, and pelletizing are important for process optimization, improving product quality, and consequently, more efficient use of natural resources and energy. Hence, as described by Moraes and Ribeiro [31], the growing importance of this topic that is referred to as geometallurgy is evident.

Mining companies work toward obtaining pellets with customized properties for each type of ironmaking process and also to meet specific requirements of different iron- and steelmaking companies. Hence, the amount and quality of supplied iron ore products are important but also to provide a diversity of types of pellets.

Therefore, the reasons why new investments in pelletizing capacity are likely to occur are the following [29]:the pelletizing process is currently the most widely used option for producing suitable agglomerates for ironmaking applications from fines of iron ore concentrates;quality requirements for DR pellets are higher and since lump ore of the required quality is not available, pellets are the only viable feed for new DR plants;pellets provide advantages to end users, such as improved productivity of blast furnaces, opportunity to increase the Fe content of the charge materials, and superior environmental performance of pellet plants as compared to sinter plants;the main iron producing systems, blast furnace, and DR reactors, will not be replaced in the near future.

pellets provide advantages to end users, such as improved productivity of blast furnaces, opportunity to increase the Fe content of the charge materials, and superior environmental performance of pellet plants as compared to sinter plants;

The authors would like to thank assistant researcher Dafne Pereira da Silva and interns (mining engineering students) Milton Candido Torres da Silva and Lucas Shin Takyia for helping find and organize figures and references.

2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We are IntechOpen, the world's leading publisher of Open Access books. Built by scientists, for scientists. Our readership spans scientists, professors, researchers, librarians, and students, as well as business professionals. We share our knowledge and peer-reveiwed research papers with libraries, scientific and engineering societies, and also work with corporate R&D departments and government entities.

Related Equipments