high chrome cast grinding steel ball for mining mill

chrome balls vs steel balls - grinding & classification circuits - metallurgist & mineral processing engineer

chrome balls vs steel balls - grinding & classification circuits - metallurgist & mineral processing engineer

I think in ball mills you can use steel balls which are very resistant to wear rates, but in SAG mills its tricky as the accumulation of small steel balls due to low wear rate in the mill will affect so much your power draw, meaning that your power draw will be high whilst grinding efficiency is reduced as in SAG mills you need larger steel balls, this will cause a reduction in throughput. So you need smaller steel balls to disappear faster in the mill and replenish with larger one so as to keep impacts at maximum, but you also need a reasonable wear rate of the larger ones so as to manage costs.

http://www.magotteaux.com/products-services/grinding-media/ would be one to get in contact with as someone else mentioned. They have justified the difference at lots of sites and released papers on the topic at a number of conferences. The best way to work out if it is likely to be helpful for your site is to discuss with a supplier and work out how to conduct either lab and/or plant trials depending on your situation.

We tested in our ball mill, there was meant to be a step change in recovery based on slurry potentials and DO, however, from the data analysis, there was nothing that could be confirmed. This was somewhat due to our method of campaigning different ores on a short term basis (2 week to 2 month campaigns), so the data analysis was reasonably difficult - however, a step change would have stood out like the proverbial. From a wear perspective, high chrome were better, however, the cost difference in high chrome to forged steel essentially eroded that benefit. In all we steered away from it.

High Chrome has been trialled in a few plants, we tested at the Copper Concentrator at Mt Isa in the 90s. Generally the change has to be justified on a combination of reduced media consumption rate, and improvements in flotation chemistry (Eh) that leads to better concentrate grade and recovery. It generally takes many weeks of a plant trial to determine if it is worth it. Agree that Chris Greet and his team at Magotteaux are worth talking to, he's knowledgeable.

DISCLAIMER: Material presented on the 911METALLURGIST.COM FORUMS is intended for information purposes only and does not constitute advice. The 911METALLURGIST.COM and 911METALLURGY CORP tries to provide content that is true and accurate as of the date of writing; however, we give no assurance or warranty regarding the accuracy, timeliness, or applicability of any of the contents. Visitors to the 911METALLURGIST.COM website should not act upon the websites content or information without first seeking appropriate professional advice. 911METALLURGY CORP accepts no responsibility for and excludes all liability in connection with browsing this website, use of information or downloading any materials from it, including but not limited to any liability for errors, inaccuracies, omissions, or misleading statements. The information at this website might include opinions or views which, unless expressly stated otherwise, are not necessarily those of the 911METALLURGIST.COM or 911METALLURGY CORP or any associated company or any person in relation to whom they would have any liability or responsibility.

80mm high chromium ball , high chrome cast iron balls ,casting grinding balls , cr 32 %

80mm high chromium ball , high chrome cast iron balls ,casting grinding balls , cr 32 %

High chromium Cast Iron Balls High chromium ball also known as wear-resistant steel ball ,are widely used in the ball mill grinding process. Production technology : Iron mould coated sand production line, constant temperature pouring casting, the bottom leakage type pouring,pouring the inlet filter Application : Cement building materials, metal mining, coal thermal power, chemical engineering, light industrial papermaking,magnetic materials, ceramic coatings Wear-resistant high Chromium ball technology parameters Wear-resistant steel ball mechanical properties and microstructure analysis name brand surface hardness (HRC) Impact value Ak(J/cm2) microstructure Falling ball impact fatigue life high chromium ball ZQCr10 58-66 2.5 M+C 80 15000 80 10000 Ccarbide Mmartensite Specifications(mm) Each weight(Kg) Quantity(pcs) per ton 30 0.11 9091 40 0.257 3891 50 0.50 2000 60 0.867 1153 70 1.37 729 80 2.05 487 90 2.90 345 100 4.00 250 110 5.30 188 120 6.80 147 125 7.75 129 130 8.74 114 Packaging & Shipping Packing :Container bags or steel drums or others. For Container Bag, Net weight 1000Kgs ,Gross Weight 1002KGS ,Measurement 0.4CBM For Steel Drums ,Net weight 850-950Kgs ,Gross Weight 865-965KGS ,Measurement 0.3CBM . Shipping and delivery Port of loading:Qingdao Port,China Delivery time : Normally 2-3 weeks after down payment received. Partial shippment allowed FAQ Payment terms :T/T (30% DP,balance against copy of B/L.; L/C Samples : Free samples are provided for test before trial order MOQ :1 Ton Key words : High Chromium ball ,High chrome grinding ball, high chrome ball, high chrome cast steel ball, High Chrome Casting Grinding Balls,High Chrome grinding media ball,High Chrome mill ball For more information about our products ,Pls feel free to contact us

cast iron mining 62 hrc high chrome grinding media balls

cast iron mining 62 hrc high chrome grinding media balls

Cast Iron Grinding Ball With Low Cr,Medium Cr,High Cr Materials For Mining Products Name: Cast Grinding Ball, Casting Grinding Ball, Casted Grinding Ball, Cast Iron Ball, Casting Ball, Cast Ball, Casted Ball, High Chrome Cast Ball, High Chrome Casting Ball, High Chrome Cast Grinding Ball, High Chrome Cast Iron Ball, High Chrome Ball, Low Chrome Cast Ball, Low Chrome Casting Ball, Low Chrome Cast Grinding Ball, Low Chrome Cast Iron Ball, Low Chrome Ball, Medium chrome cast grinding ball, Medium Chrome Casting Ball, Medium Chrome Cast Grinding Ball, Medium Chrome Cast Iron Ball, Medium Chrome Ball,Grinding Ball, Steel Ball, Grinding Steel Ball, Steel Grinding Ball, Grinding Media Ball, Grinding Media, Grinding Media Steel Ball, cast grinding steel ball, casting steel ball, casting grinding steel ball, We are one of the largest factory specialized in producingForging Grinding Media Ball, Rolling Grinding Media BallandCasting Grinding Media Ballin China.It was founded in 1988, located in Zhangqiu City, Shandong Province, China. Annual Production Capacity is 50,000 metric ton. There are 120 employees, covering an area of 15,000 square meters. Our products have been exported to more than 30 countries and got a lot of praise. We have large-scale production workshop, advanced production equipment and perfect quality assurance system. Our company has passed ISO9001:2000 quality system authentication and we always keep sincere service promise. Process features of cast iron balls: Moulding process---pouing when the molten iron temoerature reaches 1500 C,using the teoperature difference between moletn iron and the molds.in this way,the ball can achieve internal organization of grain refinement and be moredense.menanwhile,the carvide is radially arranged .and such carbide is embedded in the matrix again during grinding process,forming hatd layer continously,so that the hardness and toughness is maintained to a reasonable range,greatly improving the toughness and hardness of the grinding balls. Specifications of our products as follows: Type and Chenical Composition of Cast Balls Name Material Chemical Composition C Si Mn S/P Cr HRC Cast ball special hi-cr 2.0-3.2 1.0 0.5-2.0 0.06 18 58-64 higt-cr 2.0-3.2 1.0 0.5-1.5 0.06 10 58-62 medium-cr 2.0-3.2 1.0 0.5-1.5 0.06 5 45-48 low-cr 2.2-3.4 1.2 0.5-1.5 0.06 1.0-1.5 42-46 Physical property of cast iron balls Name Material Impact test AK.j/cm^2 Endurance test times HRC Breakage Cast ball special hi-cr 4 10000 58-64 1% higt-cr 3 10000 58-62 1% medium-cr 3 8000 45-48 1% low-cr 2 8000 42-46 1% 5.Package:Steel drums (850kg per drum) or Flexible Container Bags ( 1000kg per bag)

Products Name: Cast Grinding Ball, Casting Grinding Ball, Casted Grinding Ball, Cast Iron Ball, Casting Ball, Cast Ball, Casted Ball, High Chrome Cast Ball, High Chrome Casting Ball, High Chrome Cast Grinding Ball, High Chrome Cast Iron Ball, High Chrome Ball, Low Chrome Cast Ball, Low Chrome Casting Ball, Low Chrome Cast Grinding Ball, Low Chrome Cast Iron Ball, Low Chrome Ball, Medium chrome cast grinding ball, Medium Chrome Casting Ball, Medium Chrome Cast Grinding Ball, Medium Chrome Cast Iron Ball, Medium Chrome Ball,Grinding Ball, Steel Ball, Grinding Steel Ball, Steel Grinding Ball, Grinding Media Ball, Grinding Media, Grinding Media Steel Ball, cast grinding steel ball, casting steel ball, casting grinding steel ball,

We are one of the largest factory specialized in producingForging Grinding Media Ball, Rolling Grinding Media BallandCasting Grinding Media Ballin China.It was founded in 1988, located in Zhangqiu City, Shandong Province, China. Annual Production Capacity is 50,000 metric ton. There are 120 employees, covering an area of 15,000 square meters. Our products have been exported to more than 30 countries and got a lot of praise. We have large-scale production workshop, advanced production equipment and perfect quality assurance system. Our company has passed ISO9001:2000 quality system authentication and we always keep sincere service promise.

Process features of cast iron balls: Moulding process---pouing when the molten iron temoerature reaches 1500 C,using the teoperature difference between moletn iron and the molds.in this way,the ball can achieve internal organization of grain refinement and be moredense.menanwhile,the carvide is radially arranged .and such carbide is embedded in the matrix again during grinding process,forming hatd layer continously,so that the hardness and toughness is maintained to a reasonable range,greatly improving the toughness and hardness of the grinding balls.

heat treatment process of the high chrome cast iron grinding media

heat treatment process of the high chrome cast iron grinding media

ABSTRACT: A heat treatment process of high chromium cast iron grinding media with trace alloying elements Mo, V, NB was studied. The heat treatment processes of quenching at 980 C, tempering at 400 C and 600 C was adopted. The microstructure of the quenched Matrix is quenched Martensite, tempered at 400 C and tempered at 600 C is tempered Sorbate.

The results of hardness analysis and wear resistance analysis show that the hardness of the sample treated by quenching is 65HRCand the wear amount is the smallest, the hardness decreases to 62.8 HRC after tempering at 400 C and the wear amount increases by 18.2% compared with the quenched state, and the hardness decreases to 57.6 HRC after moderating at 600 C The wear rate increased by 30.3% compared with the quenching state.

Ball mill is widely used in cement, electric power, mineral processing, building materials, and other industries. As the grinding medium in the ball mill, the grinding ball must have both high wear resistance and good toughness. In recent years, with the rapid development of Chinas industry, the consumption of grinding ball is very large. The method of improving the performance of the grinding ball and increasing its service life will produce great economic benefits. The wear resistance of the grinding ball is closely related to its heat treatment process. In this paper, the metallographic structure and properties of the high chromium alloy ball are analyzed through the experimental study on the composition design and heat treatment process A heat treatment process for improving the wear resistance of high chromium alloy balls was proposed.

(1) Carbon: C has a significant effect on the matrix structure and carbide of high chromium cast iron. C is the main element for the formation of eutectic carbide (C R, F e)7 c 3, which plays a vital role in wear resistance.

(2) CR: Cr is a basic alloy element which ensures excellent wear resistance and toughness of high chromium white cast iron. The content of CR determines the type of carbide. When the content of CR reaches a certain amount, the increase of the content is not obvious for the improvement of wear resistance, too little cannot form a high hardness carbide (CR, Fe)7 C3.

(5) Niobium: After adding Niobium into high chrome cast iron, the properties of high chromium cast iron can be improved by improving the matrix structure and carbide morphology. The improvement of wear resistance and impact toughness is the primary performance.

(6) Trace alloying element: In High Chromium cast iron, the concentration of chromium in the Matrix is not enough to restrain the transformation of pearlite shape because most of the added chromium goes into carbide. In order to improve the as-cast hardenability of the grinding ball, it is necessary to add Mo, Cu, V, and w to the grinding ball for micro-alloying, the content (mass fraction) of which is less than 1.0 %. The combination of Molybdenum and copper can improve the impact toughness of the alloy and prolong the service life of the grinding ball.

Based on the failure analysis of the wear-resistant ball in a steel plant in Shanxi Province, the key to improve the wear-resistant performance of the ball is how to make the hardness and toughness of the Matrix match well. The toughness of the material can be further improved through grain boundary purification, grain refinement, carbide content control, carbide morphology, and size improvement while obtaining high hardness. The effect of composition optimization on the microstructure and properties of high chromium white cast iron was studied by increasing the content of CR, Mo and adding Re. The chemical composition of the optimized wear-resistant ball is shown in table 1.

The sample of 10mm* 10 mm* 8 mm in size at the center of the grinding ball was cut by weld and polished with 200 # to 1500 # metallographic sandpaper. The etching agent was 4% nitric alcohol and the etching time was 10S. The microstructure was observed and analyzed by MDS-type metalloscope.

Hardness is an important index of wear resistance, and the uniformity of ball hardness reflects the uniformity of wear. In this experiment, HR-150A Rockwell hardness tester was used, the load was 5kgs, the loading time was 5m, and the hardness was measured from the center of the specimen to the edge of the specimen. The hardness values of high chromium white cast iron after as-cast and heat treatment were measured and compared to study the effects of composition and heat treatment process on the hardness of the material.

Wear resistance is evaluated by the amount of wear under the same wear condition. Adopts ML-10 type tester, the Motor Speed is 90 r / min, the quartz sandpaper is 140 # , the load is 200g, 400g, and 800g respectively, the specimen size is dia 6 * 10mm, and the specimen is measured by the Electronic Analytical Balance (accuracy is 0.1 mg) after the specimen is worn by positive rotation and reverse rotation Wear capacity M = mass before wear M 1-mass after wear M2.

Fig. 3 is the microstructure of grinding media after different heat treatment processes. The as-cast structure shown in Fig. 3(a) is composed of Pearlite P + Carbide + Abnormal Ledeburite, with less ledeburite and more cementite, and the carbides are mostly net-like carbides. 3(B) shows the microstructure of the sample quenched at 980 C and air-cooled to room temperature, and its Matrix is acicular martensite m + granular carbide + a small amount of retained austenite. 3(C) is quenched at 980 C and air-cooled to room temperature and tempered at 400 C. The microstructure from air cooling to room temperature, the matrix structure is tempered tobolite T + Carbide + a small amount of retained AUSTENITE A, Fig. 4(d) is the microstructure from air cooling to room temperature after quenching at 980 C, and then after high temperature tempering at 600 C, Air Cooling to room temperature. The microstructure is tempered sorbite + carbide + a small amount of retained austenite. High-temperature tempering results in the decomposition of Martensite to form sorbite, and the ferrite and carbide are coarse.

Fig. 4 is the hardness contrast of grinding media under different heat treatment process. From Fig. 4, it can be seen that the hardness of grinding media is the highest after quenching at 980 C, and the hardness reaches 65HRC. The results show that the microstructure of sample an at room temperature is metamorphosed, Ledeburite as Matrix and contains pearlite and carbide, and the hardness is not high; the microstructure of sample B is mainly quenched acicular martensite with high hardness; The Matrix is mainly tempered troostite, the hardness decreases, and sample D is tempered from high temperature to room temperature, wear-resisting, the martensite in the ball structure decomposes and forms tempered sorbite, which causes the hardness to decrease seriously.

Fig. 5 is a comparison of abrasive wear of grinding media under different heat treatment processes. As can be seen from Fig. 5, after quenching at 980 C, the wear amount is the smallest, which is related to the high hardness of the quenched structure, but the internal stress is easy to exist in the quenched structure, and after quenching and tempering at 980 c, the wear amount is larger than that of the wear resistant ball quenched at 980 C The results show that the wear resistance of the ball after tempering at 400 C is lower than that after tempering at 600C, and the wear resistance of the ball after tempering at 400 C is better than that after tempering at 600C.

In this experiment, the grinding media samples were heat-treated by different processes in a high-temperature heating furnace. The microstructure and wear resistance of the grinding media after heat-treatment were analyzed by means of the metallographic microscope, Rockwell hardness tester and wear tester And came to the following conclusions:

1) At room temperature after quenching at 980 C, the Matrix structure is mainly quenched martensite, at which time the grinding media has high hardness and wear resistance, but the internal stress often exists in the quenched structure, which is easy to cause the crack and deformation of the grinding media, so it must be tempered to eliminate the internal stress and improve the toughness of the grinding media.

2) After tempering at 400 C, the Matrix structure is mainly tempered tobolite at room temperature, and the grinding media has higher hardness and wear resistance, and after tempering at 600 C, the Matrix structure is mainly tempered sorbite and contains a lot of coarse ferrite and carbide, which leads to the poor hardness and wear resistance of the grinding media. Therefore, the optimum heat treatment process for the alloy components studied is quenching at 980 C and tempering at 400 C.

no breakage high chrome wear - resisting cast iron balls for mining

no breakage high chrome wear - resisting cast iron balls for mining

The process line of production of cast iron ballsRAW MATERIALS CUTTING STOVE AUTOMATIC PRODUCTION-LINE TRANSFER MACHINE QUENCHING HEAT TREATMENT DIMENSION TEST PACKING TRANSPORTATION OR SEA FREIGHTChemical composition ( % )Name CSiMnCrMoCuPSHigh Chrome cast iron balls2.0-3.21.00.3-2.510.0-28.03.01.00.10.1Medium Chrome cast iron balls2.0-3.21.00.3-2.53.0-6.00-1.00-1.20.10.06Low Chrome cast iron balls2.1-3.61.50.3-2.51.0-3.00-1.00-0.80.10.1Mechanical Properties of Products And Microstructure NameHardness(HRC)Toughness without North(J/cm)MicrostructureDroping times of ballsHigh Chromecast iron balls584M+C+A80801500010000Medium Chrome cast iron balls483.0P+C80801500010000Low Chromecast iron balls452.5P+C10000Applications:a) Miningb) Cement plantsc) Power stationsd) Chemical industry and machineryPackaging & ShippingPacking:Container bags or steel drums or others.For Container Bag, Net weight 1000Kgs ,Gross Weight 1002KGS ,Measurement 0.4CBMFor Steel Drums ,Net weight 850-950Kgs ,Gross Weight 865-965KGS ,Measurement 0.3CBM .Shipping and deliveryPort of loading:Qingdao Port,ChinaDelivery time : Normally 2-3 weeks after down payment received.Partial shippment allowedFAQ Payment terms :T/T (30% DP,balance against copy of B/L.; L/C Samples : Free samples are provided for test before trial order MOQ :1 TonFor more information about our products ,Pls feel free to contact usWejinanzhongweiwillcontinuetopromotethebenefitsandapplicationsofourgrindingmediatoanever-wideningindustrialmarketplace.Wearereadytocontributeourshareinadvancingmutualbenefitandwin-wincooperation.

The process line of production of cast iron ballsRAW MATERIALS CUTTING STOVE AUTOMATIC PRODUCTION-LINE TRANSFER MACHINE QUENCHING HEAT TREATMENT DIMENSION TEST PACKING TRANSPORTATION OR SEA FREIGHTChemical composition ( % )

For more information about our products ,Pls feel free to contact usWejinanzhongweiwillcontinuetopromotethebenefitsandapplicationsofourgrindingmediatoanever-wideningindustrialmarketplace.Wearereadytocontributeourshareinadvancingmutualbenefitandwin-wincooperation.

Related Equipments