high end medium mineral wear parts of ball mill in nabeul

ball mills at best price in india

ball mills at best price in india

Odhav, Ahmedabad, Gujaarat, Ahmedabad A - 62, Bileshwar Estate, Opposite GVMM Road Odhav Ring Road, Odhav - 382415, Odhav, Ahmedabad, Gujaarat, Ahmedabad - 382345, Dist. Ahmedabad, Gujarat

china ball mill liner, ball mill liner manufacturers, suppliers, price

china ball mill liner, ball mill liner manufacturers, suppliers, price

China manufacturing industries are full of strong and consistent exporters. We are here to bring together China factories that supply manufacturing systems and machinery that are used by processing industries including but not limited to: ball mill, mill liner, liner. Here we are going to show you some of the process equipments for sale that featured by our reliable suppliers and manufacturers, such as Ball Mill Liner. We will do everything we can just to keep every buyer updated with this highly competitive industry & factory and its latest trends. Whether you are for group or individual sourcing, we will provide you with the latest technology and the comprehensive data of Chinese suppliers like Ball Mill Liner factory list to enhance your sourcing performance in the business line of manufacturing & processing machinery.

ball mill maintenance & installation procedure

ball mill maintenance & installation procedure

Am sure your BallMill is considered the finest possible grinding mill available. As such you will find it is designed and constructed according to heavy duty specifications. It is designed along sound engineering principles with quality workmanship and materials used in the construction of the component parts. YourBallMill reflects years of advancement in grinding principles, materials, and manufacturing techniques. It has been designed with both the operators and the erectors viewpoints in mind. Long uninterrupted performance can be expected from it if the instructions covering installation and maintenance of the mill are carried out. You may be familiar with installing mills of other designs and manufacture much lighter in construction. YourBallis heavy and rugged. It should, therefore, be treated accordingly with due respect for its heavier construction.

The purpose of this manual is to assist you in the proper installation and to acquaint you a bit further with the assembly and care of this equipment. We suggest that these instructions be read carefully and reviewed by everyone whenever involved in the actual installation and operation of the mill. In reading these general instructions, you may at times feel that they cover items which are elementary and perhaps not worthy of mention; however in studying hundreds of installations, it has been found that very often minor points are overlooked due to pressure being exerted by outside influences to get the job done in a hurry. The erection phase of this mill is actually no place to attempt cost savings by taking short cuts, or by-passing some of the work. A good installation will pay dividends for many years to come by reduced maintenance cost.With the modern practice of specialized skills and trades, there is often a line drawn between responsibilities of one crew of erectors and another. Actually the responsibility of installation does not cease with the completion of one phase nor does it begin with the starting of another. Perhaps a simple rule to adopt would be DO NOT TAKE ANYTHING FOR GRANTED. This policy of rechecking previously done work will help guarantee each step of the erection and it will carefully coordinate and tie it into subsequent erection work. To clarify or illustrate this point, take the example of concrete workers completing their job and turning it over to the machinist or millwright. The latter group should carefully check the foundation for soundness and correctness prior to starting their work.

Sound planning and good judgement will, to a great extent, be instrumental in avoiding many of the troublesome occurrences especially at the beginning of operations. While it is virtually impossible to anticipate every eventuality, nevertheless it is the intention of this manual to outline a general procedure to follow in erecting the mill, and at the same time, point out some of the pitfalls which should be avoided.

Before starting the erection of the mill, adequate handling facilities should be provided or made available, bearing in mind the weights and proportions of the various parts and sub-assemblies. This information can be ascertained from the drawings and shipping papers.

The gearing, bearings, and other machined surfaces have been coated with a protective compound, and should be cleaned thoroughly with a solvent, such as Chlorothene, (made by Dow Chemical). Judgement should be exercised as to the correct time and place for cleaning the various parts. Do not permit solvents, oil or grease to come in contact with the roughened top surfaces of the concrete foundation where grouting is to be applied; otherwise proper bonding will not result.

After cleaning the various parts, the gear and pinion teeth, trunnion journals and bearings, shafting and such, should be protected against rusting or pitting as well as against damage from falling objects or weld splatter. All burrs should be carefully removed by filing or honing.

Unless otherwise arranged for, the mill has been completely assembled in our shop. Before dismantling, the closely fitted parts were match marked, and it will greatly facilitate field assembly to adhere to these match marks.

The surfaces of all connecting joints or fits, such as shell and head flanges, trunnion flanges, trunnion liner and feeder connecting joints, should be coated with a NON-SETTING elastic compound, such as Quigley O-Seal, or Permatex to insure against leakage and to assist in drawing them up tight. DO NOT USE WHITE LEAD OR GREASE.

Parts which are affected by the hand of the mill are easily identified by referring to the parts list. In general they include the feeder, feed trunnion liner, discharge trunnion liner if it is equipped with a spiral, spiral type helical splitter, and in some cases the pan liners when they are of the spiral type. When both right and left hand mills are being assembled, it is imperative that these parts which involve hand be assembled in the correct mill.

Adequate foundations for any heavy equipment, and in particular grinding mills, are extremely important to assure proper operation. The foundation should preferably be in one piece, that is, with a reinforced slab footing (so called mat) extending under both trunnion bearing foundations as well as the pinion bearing foundation. If possible or practical, it should be extended to include also the motor and drive. With this design, in the event of some movement, the mill and foundation will tend to move as a unit. ANY SLIGHT SETTLING OF FOUNDATIONS WILL CAUSE BEARING AND GEAR MISALIGNMENT, resulting in excessive wear and higher maintenance costs. It has been found that concrete foundations on a weight basis should be at least 1 times the total weight of the grinding mill with its grinding media.

Allowable bearing pressure between concrete footings and the soil upon which the foundation rests should first be considered. The center of pressure must always pass through the center of the footing. Foundations subject to shock should be designed with less unit pressure than foundations for stationary loads. High moisture content in soils reduces the amount of allowable specific pressure that the ground can support. The following figures may be used for preliminary foundation calculations.

Portland cement mixed with sand and aggregate in the proper proportions has come to be standard practice in making concrete. For general reference cement is usually shipped in sacks containing one cubic foot of material. A barrel usually holds 4 cubic feet. Cement will deteriorate with age and will quickly absorb moisture so it should be stored in a dry place. For best results the sand and gravel used should be carefully cleaned free of humus, clay, vegetal matter, etc.

Concrete may be made up in different mixtures having different proportions of sand and aggregate. These are expressed in parts for example a 1:2:4 mixture indicates one bag of cement, 2 cubic feet of sand, and 4 cubic feet of gravel. We recommend a mixture of 1:2:3 for ball mill and rod mill foundations. The proper water to sand ratio should be carefully regulated since excess water increases the shrinkage in the concrete and lends to weaken it even more than a corresponding increase in the aggregate. Between 5 to 8 gallons of water to a sack of cement is usually recommended, the lower amount to be used where higher strength is required or where the concrete will be subject to severe weathering conditions.

Detailed dimensions for the concrete foundation are covered by the foundation plan drawing submitted separately. The drawing also carries special instructions as to the allowance for grouting, steel reinforcements, pier batter, foundation bolts and pipes. During concrete work, care should be taken to prevent concrete entering the pipes, surrounding the foundations bolts, which would limit the positioning of the bolts when erecting the various assemblies. Forms should be adequately constructed and reinforced to prevent swell, particularly where clearance is critical such as at the drive end where the gear should clear the trunnion bearing and pinion bearing piers.

For convenience in maintenance, the mill foundations should be equipped with jacking piers. These will allow the lifting of one end of the mill by use of jacks in the event maintenance must be carried out under these conditions.

Adequate foundations for any heavy equipment, and in particular Marcy grinding mills, are extremely important to assure proper operation of that equipment. Any slight settling of foundations will cause bearing and gear misalignment, resulting in excessive wear and higher maintenance costs. It has been found that concrete foundations on a weight basis should be approximately 1 times the total weight of the grinding mill with its grinding media.

Allowable bearing pressure between concrete footings and the soil upon which the foundation rests should first be considered. The center of pressure must always pass through the center of the footing. Foundations subject to shock should be designed with less unit pressures than foundations for stationary loads. High moisture content in soils reduces the amount of allowable pressure that that material can support. The following figures may be used for quick foundation calculations:

Portland cement mixed with sand and aggregate in the proper proportions has come to be standard practice in making concrete. For general reference cement is usually shipped in sacks containing one cubic foot of material. A barrel usually consists of 4 cubic feet. Cement will deteriorate with age and will quickly absorb moisture so it should be stored in a cool, dry place. The sand and gravel used should be carefully cleaned for best results to be sure of minimizing the amount of sedimentation in that material.

Concrete may be made up in different mixtures having different proportions of sand and aggregate. These are expressed in parts for example a 1:2:4 mixture indicates one bag of cement, 2 cubic feet of sand, and 4 cubic feet of gravel. We recommend a mixture of 1:2:3 for ball mill and rod mill foundations. The proper water to sand ratio should be carefully regulated since excess water will tend to weaken the concrete even more than corresponding variations in other material ratios. Between 5 to 8 gallons of water to a sack of cement is usually recommended, the lower amount to be used where higher strength is required or where the concrete will be subject to severe weathering conditions.

We recommend the use of a non-shrinking grout, and preferably of the pre-mixed type, such as Embeco, made by the Master Builders Company of Cleveland, Ohio. Thoroughly clean the top surfaces of the concrete piers, and comply with the instructions of the grouting supplier.

1. Establish vertical and horizontal centerline of mill and pinion shaftagainst the effects of this, we recommend that the trunnion bearing sole plate be crowned so as to be higher at the center line of the mill. This is done by using a higher shim at the center than at the endsand tightening the foundation bolts of both ends.

After all shimming is completed, the sole plate and bases should be grouted in position. Grouting should be well tamped and should completely fill the underside of the sole plate and bases. DO NOT REMOVE THE SHIMS AFTER OR DURING GROUTING. When the grout has hardened sufficiently it is advisable to paint the top surfaces of the concrete so as to protect it against disintegration due to the absorption of oil or grease.

If it is felt that sufficient accuracy in level between trunnion bearing piers cannot be maintained, we recommend that the grouting of the sole plate under the trunnion bearing opposite the gear end be delayed until after the mill is in place. In this way, the adjustment by shimming at this end can be made later to correct for any errors in elevation. Depending on local climatic conditions, two to seven days should he allowed for the grouting to dry and set, before painting or applying further loads to the piers.

Pinion bearings are provided of either the sleeve type or anti-friction type. Twin bearing construction may use either individual sole plates or a cast common sole plate. The unit with a common sole plate is completely assembled in our shop and is ready for installation. Normal inspection and cleaning procedure should be followed. Refer to the parts list for general assembly. These units are to be permanently grouted in position and, therefore, care should be taken to assure correct alignment.

The trunnion bearing assemblies can now be mounted on their sole plates. If the bearings are of the swivel type, a heavy industrial water-proof grease should be applied to the spherical surfaces of both the swivels and the bases. Move the trunnion bearings to their approximate position by adjustment of the set screws provided for this purpose.

In the case of ball mills, all internal wearing parts will pass through the manhole, whereas in the case of open end rod mills they will pass through the discharge trunnion opening. When lining the shell, start with the odd shaped pieces around the manhole opening if manholes are furnished. Rubber shell liner backing should be used with all cast type rod mills shell liners. If the shell liners are of the step type, they should be assembled with the thin portion, or toe, as the leading edge with respect to rotation of the mill.

Lorain liners for the shell are provided with special round head bolts, with a waterproof washer and nut. All other cast type liners for the head and shell are provided with oval head bolts with a cut washer and nuts. Except when water proof washers are used, it is advisable to wrap four or five turns of candle wicking around the shank of the bolt under the cut washer. Dip the candle wicking in white lead. All liner bolt threads should be dipped in graphite and oil before assembly. All liner bolt cuts should be firmly tightened by use of a pipe extension on a wrench, or better yet, by use of a torque wrench. The bolt heads should be driven firmly into the bolt holes with a hammer.

In order to minimise the effect of pulp race, we recommend that the spaces between the ends of the shell liners and the head liners or grates be filled with suitable packing. This packing may be in the form of rubber belting, hose, rope or wood.

If adequate overhead crane facilities are available, the heads can be assembled to the shell with the flange connecting bolts drawn tightly. Furthermore, the liners can be in place, as stated above, and the gear can be mounted, as covered by separate instructions. Then the mill can be taken to its location and set in place in the trunnion bearings.

If on the other hand the handling facilities are limited it is recommended that the bare shell and heads be assembled together in a slightly higher position than normal. After the flange bolts are tightened, the mill proper should be lowered into position. Other intermediate methods may be used, depending on local conditions.

In any event, just prior to the lowering of the mill into the bearings the trunnion journal and bushing and bases should be thoroughly cleaned and greased. Care should be taken not to foul the teeth in the gear or pinion. Trunnion bearing caps should be immediately installed, although not necessarily tightened, to prevent dirt settling on the trunnions. The gear should be at least tentatively covered for protection.

IMPORTANT. Unless the millwright or operator is familiar with this type of seal, there is a tendency to assume that the oil seal is too long because of its appearance when held firmly around the trunnion. It is not the function of the brass oil seal band to provide tension for effective sealing. This is accomplished by the garter spring which is provided with the oil seal.

Assemble the oil seal with the spring in place, and with the split at the top. Encircle the oil seal with the band, keeping the blocks on the side of the bearing at or near the horizontal center line so that when in place they will fit between the two dowel pins on the bearing, which are used to prevent rotation of the seal.

Moderately tighten up the cap screws at the blocks, pulling them together to thus hold the seal with its spring in place. If the blocks cannot be pulled snuggly together, then the oil seal may be cut accordingly. Oil the trunnion surface and slide the entire seal assembly back into place against the shoulder of the bearing and finish tightening. Install the retainer ring and splash ring as shown.

In most cases the trunnion liners are already mounted in the trunnions of the mills. If not, they should be assembled with attention being given to match marks or in some cases to dowel pins which are used to locate the trunnion liners in their proper relation to other parts.

If a scoop feeder, combination drum scoop feeder or drum feeder is supplied with the mill, it should be mounted on the extended flange of the feed trunnion liner, matching the dowel pin with its respective hole. The dowel pin arrangement is provided only where there is a spiral in the feed trunnion liner. This matching is important as it fixes the relationship between the discharge from the scoop and the internal spiral of the trunnion liner. Tighten the bolts attaching the feeder to the trunnion liner evenly, all around the circle, seating the feeder tightly and squarely on its bevelled seat. Check the bolts holding the lips and other bolts that may require tightening. The beveled seat design is used primarily where a feeder is provided for the trunnion to trunnion liner connection, and the trunnion liner to feeder connection. When a feeder is not used these connecting joints are usually provided by a simple cylindrical or male and female joint.

If a spout feeder is to be used, it is generally supplied by the user, and should be mounted independently of the mill. The spout should project inside the feed trunnion liner, but must not touch the liner or spiral.

Ordinarily the feed box for a scoop tender is designed and supplied by the user. The feed box should be so constructed that it has at least 6 clearance on both sides and at the bottom of the scoop. This clearance is measured from the outside of the feed scoop.

The feed box may be constructed of 2 wood, but more often is made of 3/16 or plate steel reinforced with angles. In the larger size mills, the lower portion is sometimes made of concrete. Necessary openings should be provided for the original feed and the sand returns from the classifiers when in closed circuit.

A plate steel gear guard is furnished with the mill for safety in operation and to protect the gear and pinion from dirt or grit. As soon as the gear and pinion have been cleaned and coated with the proper lubricant, the gear guard should be assembled and set on its foundation.

Most Rod Mills are provided with a discharge housing mechanism mounted independently of the mill. This unit consists of the housing proper, plug door, plug shaft, arm, and various hinge pins and pivot and lock pins. The door mechanism is extra heavy throughout and is subject to adjustment as regard location. Place the housing proper on the foundation, level with steel shims and tighten the foundation bolts. The various parts may now be assembled to the housing proper and the door plug can be swung into place, securing it with the necessary lock pins.

After the mill has been completely assembled and aligned, the door mechanism centered and adjusted, and all clearances checked, the housing base can be grouted. The unit should be so located both vertically and horizontally so as to provide a uniform annular opening between the discharge plug door and the head liners.

In some cases because of space limitation, economy reasons, etc., the mill is not equipped with separate discharge housing. In such a case, the open end low discharge principal is accomplished by means of the same size opening through the discharge trunnion but with the plug door attached to lugs on the head liner segments or lugs on the discharge trunnion liner proper. In still other cases, it is sometimes effected by means of an arm holding the plug and mounted on a cross member which is attached to the bell of the discharge trunnion liner. In such cases as those, a light weight sheet steel discharge housing is supplied by the user to accommodate the local plant layout in conjunction with the discharge launder.

TRUNNION BEARING LUBRICATION. For the larger mills with trunnion bearings provided with oil seals, we recommend flood oil lubrication. This can be accomplished by a centralized system for two or more mills, or by an individual system for each mill. We recommend the individual system for each mill, except where six or more mills are involved, or when economy reasons may dictate otherwise.

In any event oil flow to each trunnion bearing should be between 3 to 5 gallons per minute. The oil should be adequately filtered and heaters may be used to maintain a temperature which will provide proper filtration and maintain the necessary viscosity for adequate flow. The lines leading from the filter to the bearing should be of copper tubing or pickled piping. The drain line leading from the bearings to the storage or sump tank should be of adequate size for proper flow, and they should be set at a minimum slope of per foot, perferably per foot. Avoid unnecessary elbows and fittings wherever possible. Avoid bends which create traps and which might accumulate impurities. All lines should be thoroughly cleaned and flushed with a solvent, and then blown free with air, before oil is added.

It is advisable to interlock the oil pump motor with the mill motor in such a way that the mill cannot be started until after the oil pump is operating. We recommend the use of a non-adjuslable valve at each bearing to prevent tampering.

When using the drip oil system it is advisable to place wool yarn or waste inside a canvas porous bag to prevent small pieces of the wool being drawn down into the trunnion journal. If brick grease is used, care should be taken in its selection with regard to the range of its effective temperature. In other words, it should be pointed out that brick grease is generally designed for a specific temperature range. Where the bearing temperature does not come up to the minimum temperature rating of the brick grease, the oil will not flow from it, and on the other hand if the temperature of the bearing exceeds the maximum temperature rating of the brick grease, the brick is subject to glazing; therefore, blinding off of the oil. This brick should be trimmed so that it rests freely on the trunnion journal, and does not hang up, or bind on the sides of the grease box.

When replacing the brick grease, remove the old grease completely. Due to the extended running time of brick grease, there is usually an accumulation of impurities and foreign matter on the top surface, which is detrimental to the bearing.

Where anti-friction bearings are supplied, they are adequately sealed for either grease or oil lubrication. If a flood system is used for the trunnion bearings and it is adequately filtered, it can then be used for pinion bearings with the same precautions taken as mentioned above, with a flow of to 1 gallons per minute to each bearing.

These lubricants can be applied by hand, but we highly recommend some type of spray system, whether it be automatic, semi-automatic or manually operated. It has been found that it is best to lubricate gears frequently with small quantities.

Start the lubrication system and run it for about ten minutes, adjusting the oil flow at each bearing. Check all of the bolts and nuts on the mill for tightness and remove all ladders, tools and other obstructions prior to starting the mill.

Before starting the mill, even though it is empty, we recommend that it be jogged one or two revolutions for a check as to clearance of the gear and its guard, splash rings, etc. The trunnion journal should also be checked for uniform oil film and for any evidence of foreign material which might manifest itself through the appearance of scratches on the journal. If there are any scratches, it is very possible that some foreign material such as weld splatter may have been drawn down into the bushing, and can be found imbedded there. These particles should be removed before proceeding further.

If everything is found to be satisfactory, then the mill should be run for ten to fifteen minutes, and stopped. The trunnion bearings should be checked for any undue temperature and the gear grease pattern can be observed for uniformity which would indicate correct alignment.

It should be noted that with an empty mill the reactions and operating characteristics of the bearings and gearing at this point are somewhat different than when operating with a ball or rod charge. Gear noises will be prominent and some vibration will occur due to no load and normal back-lash. Furthermore, it will be found that the mill will continue to rotate for some time after the power is shut off. Safety precautions should therefore he observed, and no work should be done on the mill until it has come to a complete stop.

We have now reached the point where a half ball or rod charge can be added, and the mill run for another six to eight hours, feeding approximately half the anticipated tonnage. The mill should now be stopped, end the gear grease pattern checked, and gear and pinion mesh corrected, if necessary, according to separate instructions.

The full charge of balls or rods can now be added, as well as the full amount of feed, and after a run of about four to six days, ALL BOLTS SHOULD AGAIN BE RETIGHTENED, and the gear and pinion checked again, and adjusted if necessary.

Where starting jacks are provided for the trunnion bearings of the larger sized mills, they should be filled with the same oil that is used for the lubrication of the trunnion bearings. Before starting the mill they should be pumped so as to insure having an oil film between the journal and the bushing.

When relining any part of the mill, clean away all sand from the parts to be relined before putting in the new liners. For the head liners and shell liners you may then proceed in the same manner used at the time of the initial assembly.

Before relining the grate type discharge head, it is advisable to refer to the assembly drawings and the parts list.Because of such limitations as the size of the manhole opening, and for various other reasons, it will be found that the center discharge liner and cone designs vary. The cone may be a separate piece or integral with either the trunnion liner, or the router discharge liner. Furthermore, it will be found in some mills that the center discharge liner is held by bolts through the discharge head, whereas in other cases it depends upon the clamping effect of grates to hold it in position. In any event, the primary thing to remember in assembling the discharge grate head parts is the fact that the grate should be first drawn up tightly towards the center discharge liner by adjusting the grate set screws located at the periphery of the discharge head. This adjustment should be carried out in progressive steps, alternating at about 180 if possible and in such a manner that, the center discharge liner does not become dislodged from its proper position at the center of the mill. These grate set screws should be adjusted with the side clamp bar bolts loosened. After the grates have been completely tightened with the set screws, check for correct and uniform position of each grate section. The side clamp bar bolts may now be lightened, again using an alternate process. This should result in the side clamp bars firmly bearing against the beveled sides of the grates. The side clamp bars should not hear against the lifter liners.

When new pan liners are installed, they should be grouted in position so as to prevent pulp race in the void space between the discharge head and the pan liner. Another good method of preventing this pulp race is the use of the sponge rubber which can be cemented in place.

After the mill is erected, in order to avoid overlooking both obvious and obscure installation details, we recommend the use of a check list. This is particularly recommended for multiple mill installations where it is difficult to control the different phases of installation for each and every mill. Such a check list can be modeled after the following:

No. 1 Connecting Bolts drawn tight. A. Head and Shell flange bolts. B. Gear Connecting, bolts. No. 2 Trunnion studs or bolts drawn up tight. No. 3 Trunnion liner and feeder connecting bolts or studs drawn up tight. No. 4 Feeder lip bolts tightened. No. 5 Liner bolts drawn up tight. No. 6 Gear. A. Concentric B. Backlash C. Runout D. Joint bolts drawn up tight. No. 7 Coupling and Drive alignment and lubrication. No. 8 Bearings and Gearing cleaned and lubricated. No. 9 Lubrication system in working order with automatic devices including alarms and interlocking systems.

We further recommend that during the first thirty to sixty days of operation, particular attention be given to bolt tightness, foundation settlement and condition of the grouting. We suggest any unusual occurrence be recorded so that should trouble develop later there may be a clue which would simplify diagnosing and rectifying the situation.

As a safety precaution, and in many cases in order to comply with local safety regulations, guards should be used to protect the operators and mechanics from contact with moving parts. However, these guards should not be of such a design that will prevent or hinder the close inspection of the vital parts. Frequent inspection should be made at regular intervals with particular attention being given to the condition of the wearing parts in the mill. In this way, you will be better able to anticipate your needs for liners and other parts in time to comply with the current delivery schedules.

When ordering repair or replacement parts for your mill, be sure to identify the parts with the number and description as shown on the repair parts list, and specify the hand and serial number of the mill.

By following the instructions outlined in this manual, mechanical malfunctions will be eliminated. However, inadvertent errors may occur even under, the most careful supervision. With this in mind, it is possible that some difficulties may arise. Whenever any abnormal mechanical reactions are found, invariably they can be attributed to causes which though sometimes obvious are often hidden. We sight herewith the most common problems, with their solutions.

Cause A GROUT DISINTEGRATION. Very often when the grouting is not up to specification the vibration from the mill tends to disintegrate the grouting. In most instances the disintegration starts between the sole plate and the top surface of the grouting near or at the vertical centerline of the mill. As this continues, the weight of the mill causes the sole plate and trunnion bearing base to bend with a resultant pinching action at the side of the bearing near the horizontal center line of the mill. This pinching will cut off and wipe the oil film from the journal and will manifest itself in the same manner as if the lubrication supply had been cut off. If the grout disintegration is limited to about . 050 and does not appear to be progressing further, the situation can be corrected by applying a corresponding amount of shimming between the trunnion bearing base and the sole plate near the centerline of the mill in such a fashion that the trunnion bearing base has been returned to its normal dimensional position. If, on the other hand, the grouting is in excess of . 050 and appears to be progressing further, it is advisable to shut down operations until the sole plate has been re grouted.

Cause B HIGH SPOT ON THE BUSHING. While all BallMill bushings are scraped in the shop to fit either a jig mandrel or the head proper to which it is to be fitted, nevertheless there is a certain amount of seasoning and dimensional change which goes on in the type of metals used. Therefore if high spots are found, the mill should be raised, the bushings removed and rescraped. Bluing may be used to assist in detecting high spots.

Cause C INSUFFICIENT OIL FLOW. Increase the oil supply if it is a flood oil system. If brick grease is used, it is possible that the particular grade of brick may not be applicable to the actual bearing temperature. Refer to the remarks in this manual under the paragraph entitled Lubrication.

Cause E EXCESSIVE RUBBING ON THE SIDE OF THE BUSHING. This comes about due to the improper setting of the bearings in the longitudinal plane. In some cases, particularly on dry grinding or hot clinker grinding mills, the expansion of the mills proper may account for this condition. In any event, it can be remedied by re-adjusting the bearing base on the sole plate longitudinally at the end opposite the drive.

There are many more lubricant suppliers, such as E. F. Houghton and Co. , or Lubriplate Division of Fiske Bros. Refining Co. In making your final selection of lubricants, you should consider the actual plant conditions as well as the standardization of lubricants. New and improved lubricants are being marketed, and we, therefore, suggest that you consult your local suppliers.

grinding cylpebs

grinding cylpebs

Our automatic production line for the grinding cylpebs is the unique. With stable quality, high production efficiency, high hardness, wear-resistant, the volumetric hardness of the grinding cylpebs is between 60-63HRC,the breakage is less than 0.5%. The organization of the grinding cylpebs is compact, the hardness is constant from the inner to the surface. Now has extensively used in the cement industry, the wear rate is about 30g-60g per Ton cement.

Grinding Cylpebs are made from low-alloy chilled cast iron. The molten metal leaves the furnace at approximately 1500 C and is transferred to a continuous casting machine where the selected size Cylpebs are created; by changing the moulds the full range of cylindrical media can be manufactured via one simple process. The Cylpebs are demoulded while still red hot and placed in a cooling section for several hours to relieve internal stress. Solidification takes place in seconds and is formed from the external surface inward to the centre of the media. It has been claimed that this manufacturing process contributes to the cost effectiveness of the media, by being more efficient and requiring less energy than the conventional forging method.

Because of their cylindrical geometry, Cylpebs have greater surface area and higher bulk density compared with balls of similar mass and size. Cylpebs of equal diameter and length have 14.5% greater surface area than balls of the same mass, and 9% higher bulk density than steel balls, or 12% higher than cast balls. As a result, for a given charge volume, about 25% more grinding media surface area is available for size reduction when charged with Cylpebs, but the mill would also draw more power.

ball mill - an overview | sciencedirect topics

ball mill - an overview | sciencedirect topics

The ball mill accepts the SAG or AG mill product. Ball mills give a controlled final grind and produce flotation feed of a uniform size. Ball mills tumble iron or steel balls with the ore. The balls are initially 510 cm diameter but gradually wear away as grinding of the ore proceeds. The feed to ball mills (dry basis) is typically 75 vol.-% ore and 25% steel.

The ball mill is operated in closed circuit with a particle-size measurement device and size-control cyclones. The cyclones send correct-size material on to flotation and direct oversize material back to the ball mill for further grinding.

Grinding elements in ball mills travel at different velocities. Therefore, collision force, direction and kinetic energy between two or more elements vary greatly within the ball charge. Frictional wear or rubbing forces act on the particles, as well as collision energy. These forces are derived from the rotational motion of the balls and movement of particles within the mill and contact zones of colliding balls.

By rotation of the mill body, due to friction between mill wall and balls, the latter rise in the direction of rotation till a helix angle does not exceed the angle of repose, whereupon, the balls roll down. Increasing of rotation rate leads to growth of the centrifugal force and the helix angle increases, correspondingly, till the component of weight strength of balls become larger than the centrifugal force. From this moment the balls are beginning to fall down, describing during falling certain parabolic curves (Figure 2.7). With the further increase of rotation rate, the centrifugal force may become so large that balls will turn together with the mill body without falling down. The critical speed n (rpm) when the balls are attached to the wall due to centrifugation:

where Dm is the mill diameter in meters. The optimum rotational speed is usually set at 6580% of the critical speed. These data are approximate and may not be valid for metal particles that tend to agglomerate by welding.

The degree of filling the mill with balls also influences productivity of the mill and milling efficiency. With excessive filling, the rising balls collide with falling ones. Generally, filling the mill by balls must not exceed 3035% of its volume.

The mill productivity also depends on many other factors: physical-chemical properties of feed material, filling of the mill by balls and their sizes, armor surface shape, speed of rotation, milling fineness and timely moving off of ground product.

where b.ap is the apparent density of the balls; l is the degree of filling of the mill by balls; n is revolutions per minute; 1, and 2 are coefficients of efficiency of electric engine and drive, respectively.

A feature of ball mills is their high specific energy consumption; a mill filled with balls, working idle, consumes approximately as much energy as at full-scale capacity, i.e. during grinding of material. Therefore, it is most disadvantageous to use a ball mill at less than full capacity.

The ball mill is a tumbling mill that uses steel balls as the grinding media. The length of the cylindrical shell is usually 11.5 times the shell diameter (Figure 8.11). The feed can be dry, with less than 3% moisture to minimize ball coating, or slurry containing 2040% water by weight. Ball mills are employed in either primary or secondary grinding applications. In primary applications, they receive their feed from crushers, and in secondary applications, they receive their feed from rod mills, AG mills, or SAG mills.

Ball mills are filled up to 40% with steel balls (with 3080mm diameter), which effectively grind the ore. The material that is to be ground fills the voids between the balls. The tumbling balls capture the particles in ball/ball or ball/liner events and load them to the point of fracture.

When hard pebbles rather than steel balls are used for the grinding media, the mills are known as pebble mills. As mentioned earlier, pebble mills are widely used in the North American taconite iron ore operations. Since the weight of pebbles per unit volume is 3555% of that of steel balls, and as the power input is directly proportional to the volume weight of the grinding medium, the power input and capacity of pebble mills are correspondingly lower. Thus, in a given grinding circuit, for a certain feed rate, a pebble mill would be much larger than a ball mill, with correspondingly a higher capital cost. However, the increase in capital cost is justified economically by a reduction in operating cost attributed to the elimination of steel grinding media.

In general, ball mills can be operated either wet or dry and are capable of producing products in the order of 100m. This represents reduction ratios of as great as 100. Very large tonnages can be ground with these ball mills because they are very effective material handling devices. Ball mills are rated by power rather than capacity. Today, the largest ball mill in operation is 8.53m diameter and 13.41m long with a corresponding motor power of 22MW (Toromocho, private communications).

Planetary ball mills. A planetary ball mill consists of at least one grinding jar, which is arranged eccentrically on a so-called sun wheel. The direction of movement of the sun wheel is opposite to that of the grinding jars according to a fixed ratio. The grinding balls in the grinding jars are subjected to superimposed rotational movements. The jars are moved around their own axis and, in the opposite direction, around the axis of the sun wheel at uniform speed and uniform rotation ratios. The result is that the superimposition of the centrifugal forces changes constantly (Coriolis motion). The grinding balls describe a semicircular movement, separate from the inside wall, and collide with the opposite surface at high impact energy. The difference in speeds produces an interaction between frictional and impact forces, which releases high dynamic energies. The interplay between these forces produces the high and very effective degree of size reduction of the planetary ball mill. Planetary ball mills are smaller than common ball mills, and are mainly used in laboratories for grinding sample material down to very small sizes.

Vibration mill. Twin- and three-tube vibrating mills are driven by an unbalanced drive. The entire filling of the grinding cylinders, which comprises the grinding media and the feed material, constantly receives impulses from the circular vibrations in the body of the mill. The grinding action itself is produced by the rotation of the grinding media in the opposite direction to the driving rotation and by continuous head-on collisions of the grinding media. The residence time of the material contained in the grinding cylinders is determined by the quantity of the flowing material. The residence time can also be influenced by using damming devices. The sample passes through the grinding cylinders in a helical curve and slides down from the inflow to the outflow. The high degree of fineness achieved is the result of this long grinding procedure. Continuous feeding is carried out by vibrating feeders, rotary valves, or conveyor screws. The product is subsequently conveyed either pneumatically or mechanically. They are basically used to homogenize food and feed.

CryoGrinder. As small samples (100 mg or <20 ml) are difficult to recover from a standard mortar and pestle, the CryoGrinder serves as an alternative. The CryoGrinder is a miniature mortar shaped as a small well and a tightly fitting pestle. The CryoGrinder is prechilled, then samples are added to the well and ground by a handheld cordless screwdriver. The homogenization and collection of the sample is highly efficient. In environmental analysis, this system is used when very small samples are available, such as small organisms or organs (brains, hepatopancreas, etc.).

The vibratory ball mill is another kind of high-energy ball mill that is used mainly for preparing amorphous alloys. The vials capacities in the vibratory mills are smaller (about 10 ml in volume) compared to the previous types of mills. In this mill, the charge of the powder and milling tools are agitated in three perpendicular directions (Fig. 1.6) at very high speed, as high as 1200 rpm.

Another type of the vibratory ball mill, which is used at the van der Waals-Zeeman Laboratory, consists of a stainless steel vial with a hardened steel bottom, and a single hardened steel ball of 6 cm in diameter (Fig. 1.7).

The mill is evacuated during milling to a pressure of 106 Torr, in order to avoid reactions with a gas atmosphere.[44] Subsequently, this mill is suitable for mechanical alloying of some special systems that are highly reactive with the surrounding atmosphere, such as rare earth elements.

A ball mill is a relatively simple apparatus in which the motion of the reactor, or of a part of it, induces a series of collisions of balls with each other and with the reactor walls (Suryanarayana, 2001). At each collision, a fraction of the powder inside the reactor is trapped between the colliding surfaces of the milling tools and submitted to a mechanical load at relatively high strain rates (Suryanarayana, 2001). This load generates a local nonhydrostatic mechanical stress at every point of contact between any pair of powder particles. The specific features of the deformation processes induced by these stresses depend on the intensity of the mechanical stresses themselves, on the details of the powder particle arrangement, that is on the topology of the contact network, and on the physical and chemical properties of powders (Martin et al., 2003; Delogu, 2008a). At the end of any given collision event, the powder that has been trapped is remixed with the powder that has not undergone this process. Correspondingly, at any instant in the mechanical processing, the whole powder charge includes fractions of powder that have undergone a different number of collisions.

The individual reactive processes at the perturbed interface between metallic elements are expected to occur on timescales that are, at most, comparable with the collision duration (Hammerberg et al., 1998; Urakaev and Boldyrev, 2000; Lund and Schuh, 2003; Delogu and Cocco, 2005a,b). Therefore, unless the ball mill is characterized by unusually high rates of powder mixing and frequency of collisions, reactive events initiated by local deformation processes at a given collision are not affected by a successive collision. Indeed, the time interval between successive collisions is significantly longer than the time period required by local structural perturbations for full relaxation (Hammerberg et al., 1998; Urakaev and Boldyrev, 2000; Lund and Schuh, 2003; Delogu and Cocco, 2005a,b).

These few considerations suffice to point out the two fundamental features of powder processing by ball milling, which in turn govern the MA processes in ball mills. First, mechanical processing by ball milling is a discrete processing method. Second, it has statistical character. All of this has important consequences for the study of the kinetics of MA processes. The fact that local deformation events are connected to individual collisions suggests that absolute time is not an appropriate reference quantity to describe mechanically induced phase transformations. Such a description should rather be made as a function of the number of collisions (Delogu et al., 2004). A satisfactory description of the MA kinetics must also account for the intrinsic statistical character of powder processing by ball milling. The amount of powder trapped in any given collision, at the end of collision is indeed substantially remixed with the other powder in the reactor. It follows that the same amount, or a fraction of it, could at least in principle be trapped again in the successive collision.

This is undoubtedly a difficult aspect to take into account in a mathematical description of MA kinetics. There are at least two extreme cases to consider. On the one hand, it could be assumed that the powder trapped in a given collision cannot be trapped in the successive one. On the other, it could be assumed that powder mixing is ideal and that the amount of powder trapped at a given collision has the same probability of being processed in the successive collision. Both these cases allow the development of a mathematical model able to describe the relationship between apparent kinetics and individual collision events. However, the latter assumption seems to be more reliable than the former one, at least for commercial mills characterized by relatively complex displacement in the reactor (Manai et al., 2001, 2004).

A further obvious condition for the successful development of a mathematical description of MA processes is the one related to the uniformity of collision regimes. More specifically, it is highly desirable that the powders trapped at impact always experience the same conditions. This requires the control of the ball dynamics inside the reactor, which can be approximately obtained by using a single milling ball and an amount of powder large enough to assure inelastic impact conditions (Manai et al., 2001, 2004; Delogu et al., 2004). In fact, the use of a single milling ball avoids impacts between balls, which have a remarkable disordering effect on the ball dynamics, whereas inelastic impact conditions permit the establishment of regular and periodic ball dynamics (Manai et al., 2001, 2004; Delogu et al., 2004).

All of the above assumptions and observations represent the basis and guidelines for the development of the mathematical model briefly outlined in the following. It has been successfully applied to the case of a Spex Mixer/ Mill mod. 8000, but the same approach can, in principle, be used for other ball mills.

The Planetary ball mills are the most popular mills used in MM, MA, and MD scientific researches for synthesizing almost all of the materials presented in Figure 1.1. In this type of mill, the milling media have considerably high energy, because milling stock and balls come off the inner wall of the vial (milling bowl or vial) and the effective centrifugal force reaches up to 20 times gravitational acceleration.

The centrifugal forces caused by the rotation of the supporting disc and autonomous turning of the vial act on the milling charge (balls and powders). Since the turning directions of the supporting disc and the vial are opposite, the centrifugal forces alternately are synchronized and opposite. Therefore, the milling media and the charged powders alternatively roll on the inner wall of the vial, and are lifted and thrown off across the bowl at high speed, as schematically presented in Figure 2.17.

However, there are some companies in the world who manufacture and sell number of planetary-type ball mills; Fritsch GmbH (www.fritsch-milling.com) and Retsch (http://www.retsch.com) are considered to be the oldest and principal companies in this area.

Fritsch produces different types of planetary ball mills with different capacities and rotation speeds. Perhaps, Fritsch Pulverisette P5 (Figure 2.18(a)) and Fritsch Pulverisette P6 (Figure 2.18(b)) are the most popular models of Fritsch planetary ball mills. A variety of vials and balls made of different materials with different capacities, starting from 80ml up to 500ml, are available for the Fritsch Pulverisette planetary ball mills; these include tempered steel, stainless steel, tungsten carbide, agate, sintered corundum, silicon nitride, and zirconium oxide. Figure 2.19 presents 80ml-tempered steel vial (a) and 500ml-agate vials (b) together with their milling media that are made of the same materials.

Figure 2.18. Photographs of Fritsch planetary-type high-energy ball mill of (a) Pulverisette P5 and (b) Pulverisette P6. The equipment is housed in the Nanotechnology Laboratory, Energy and Building Research Center (EBRC), Kuwait Institute for Scientific Research (KISR).

Figure 2.19. Photographs of the vials used for Fritsch planetary ball mills with capacity of (a) 80ml and (b) 500ml. The vials and the balls shown in (a) and (b) are made of tempered steel agate materials, respectively (Nanotechnology Laboratory, Energy and Building Research Center (EBRC), Kuwait Institute for Scientific Research (KISR)).

More recently and in year 2011, Fritsch GmbH (http://www.fritsch-milling.com) introduced a new high-speed and versatile planetary ball mill called Planetary Micro Mill PULVERISETTE 7 (Figure 2.20). The company claims this new ball mill will be helpful to enable extreme high-energy ball milling at rotational speed reaching to 1,100rpm. This allows the new mill to achieve sensational centrifugal accelerations up to 95 times Earth gravity. They also mentioned that the energy application resulted from this new machine is about 150% greater than the classic planetary mills. Accordingly, it is expected that this new milling machine will enable the researchers to get their milled powders in short ball-milling time with fine powder particle sizes that can reach to be less than 1m in diameter. The vials available for this new type of mill have sizes of 20, 45, and 80ml. Both the vials and balls can be made of the same materials, which are used in the manufacture of large vials used for the classic Fritsch planetary ball mills, as shown in the previous text.

Retsch has also produced a number of capable high-energy planetary ball mills with different capacities (http://www.retsch.com/products/milling/planetary-ball-mills/); namely Planetary Ball Mill PM 100 (Figure 2.21(a)), Planetary Ball Mill PM 100 CM, Planetary Ball Mill PM 200, and Planetary Ball Mill PM 400 (Figure 2.21(b)). Like Fritsch, Retsch offers high-quality ball-milling vials with different capacities (12, 25, 50, 50, 125, 250, and 500ml) and balls of different diameters (540mm), as exemplified in Figure 2.22. These milling tools can be made of hardened steel as well as other different materials such as carbides, nitrides, and oxides.

Figure 2.21. Photographs of Retsch planetary-type high-energy ball mill of (a) PM 100 and (b) PM 400. The equipment is housed in the Nanotechnology Laboratory, Energy and Building Research Center (EBRC), Kuwait Institute for Scientific Research (KISR).

Figure 2.22. Photographs of the vials used for Retsch planetary ball mills with capacity of (a) 80ml, (b) 250ml, and (c) 500ml. The vials and the balls shown are made of tempered steel (Nanotechnology Laboratory, Energy and Building Research Center (EBRC), Kuwait Institute for Scientific Research (KISR)).

Both Fritsch and Retsch companies have offered special types of vials that allow monitoring and measure the gas pressure and temperature inside the vial during the high-energy planetary ball-milling process. Moreover, these vials allow milling the powders under inert (e.g., argon or helium) or reactive gas (e.g., hydrogen or nitrogen) with a maximum gas pressure of 500kPa (5bar). It is worth mentioning here that such a development made on the vials design allows the users and researchers to monitor the progress tackled during the MA and MD processes by following up the phase transformations and heat realizing upon RBM, where the interaction of the gas used with the freshly created surfaces of the powders during milling (adsorption, absorption, desorption, and decomposition) can be monitored. Furthermore, the data of the temperature and pressure driven upon using this system is very helpful when the ball mills are used for the formation of stable (e.g., intermetallic compounds) and metastable (e.g., amorphous and nanocrystalline materials) phases. In addition, measuring the vial temperature during blank (without samples) high-energy ball mill can be used as an indication to realize the effects of friction, impact, and conversion processes.

More recently, Evico-magnetics (www.evico-magnetics.de) has manufactured an extraordinary high-pressure milling vial with gas-temperature-monitoring (GTM) system. Likewise both system produced by Fritsch and Retsch, the developed system produced by Evico-magnetics, allowing RBM but at very high gas pressure that can reach to 15,000kPa (150bar). In addition, it allows in situ monitoring of temperature and of pressure by incorporating GTM. The vials, which can be used with any planetary mills, are made of hardened steel with capacity up to 220ml. The manufacturer offers also two-channel system for simultaneous use of two milling vials.

Using different ball mills as examples, it has been shown that, on the basis of the theory of glancing collision of rigid bodies, the theoretical calculation of tPT conditions and the kinetics of mechanochemical processes are possible for the reactors that are intended to perform different physicochemical processes during mechanical treatment of solids. According to the calculations, the physicochemical effect of mechanochemical reactors is due to short-time impulses of pressure (P = ~ 10101011 dyn cm2) with shift, and temperature T(x, t). The highest temperature impulse T ~ 103 K are caused by the dry friction phenomenon.

Typical spatial and time parameters of the impactfriction interaction of the particles with a size R ~ 104 cm are as follows: localization region, x ~ 106 cm; time, t ~ 108 s. On the basis of the obtained theoretical results, the effect of short-time contact fusion of particles treated in various comminuting devices can play a key role in the mechanism of activation and chemical reactions for wide range of mechanochemical processes. This role involves several aspects, that is, the very fact of contact fusion transforms the solid phase process onto another qualitative level, judging from the mass transfer coefficients. The spatial and time characteristics of the fused zone are such that quenching of non-equilibrium defects and intermediate products of chemical reactions occurs; solidification of the fused zone near the contact point results in the formation of a nanocrystal or nanoamor- phous state. The calculation models considered above and the kinetic equations obtained using them allow quantitative ab initio estimates of rate constants to be performed for any specific processes of mechanical activation and chemical transformation of the substances in ball mills.

There are two classes of ball mills: planetary and mixer (also called swing) mill. The terms high-speed vibration milling (HSVM), high-speed ball milling (HSBM), and planetary ball mill (PBM) are often used. The commercial apparatus are PBMs Fritsch P-5 and Fritsch Pulverisettes 6 and 7 classic line, the Retsch shaker (or mixer) mills ZM1, MM200, MM400, AS200, the Spex 8000, 6750 freezer/mill SPEX CertiPrep, and the SWH-0.4 vibrational ball mill. In some instances temperature controlled apparatus were used (58MI1); freezer/mills were used in some rare cases (13MOP1824).

The balls are made of stainless steel, agate (SiO2), zirconium oxide (ZrO2), or silicon nitride (Si3N). The use of stainless steel will contaminate the samples with steel particles and this is a problem both for solid-state NMR and for drug purity.

However, there are many types of ball mills (see Chapter 2 for more details), such as drum ball mills, jet ball mills, bead-mills, roller ball mills, vibration ball mills, and planetary ball mills, they can be grouped or classified into two types according to their rotation speed, as follows: (i) high-energy ball mills and (ii) low-energy ball mills. Table 3.1 presents characteristics and comparison between three types of ball mills (attritors, vibratory mills, planetary ball mills and roller mills) that are intensively used on MA, MD, and MM techniques.

In fact, choosing the right ball mill depends on the objectives of the process and the sort of materials (hard, brittle, ductile, etc.) that will be subjecting to the ball-milling process. For example, the characteristics and properties of those ball mills used for reduction in the particle size of the starting materials via top-down approach, or so-called mechanical milling (MM process), or for mechanically induced solid-state mixing for fabrications of composite and nanocomposite powders may differ widely from those mills used for achieving mechanically induced solid-state reaction (MISSR) between the starting reactant materials of elemental powders (MA process), or for tackling dramatic phase transformation changes on the structure of the starting materials (MD). Most of the ball mills in the market can be employed for different purposes and for preparing of wide range of new materials.

Martinez-Sanchez et al. [4] have pointed out that employing of high-energy ball mills not only contaminates the milled amorphous powders with significant volume fractions of impurities that come from milling media that move at high velocity, but it also affects the stability and crystallization properties of the formed amorphous phase. They have proved that the properties of the formed amorphous phase (Mo53Ni47) powder depends on the type of the ball-mill equipment (SPEX 8000D Mixer/Mill and Zoz Simoloter mill) used in their important investigations. This was indicated by the high contamination content of oxygen on the amorphous powders prepared by SPEX 8000D Mixer/Mill, when compared with the corresponding amorphous powders prepared by Zoz Simoloter mill. Accordingly, they have attributed the poor stabilities, indexed by the crystallization temperature of the amorphous phase formed by SPEX 8000D Mixer/Mill to the presence of foreign matter (impurities).

Related Equipments