high end small carbon black powder grinding mill sell at a loss in mutare

synthesis and thermal stability of the multielement carbide (tazrhfnbti) 5 | springerlink

synthesis and thermal stability of the multielement carbide (tazrhfnbti) 5 | springerlink

The multielement carbide (TaZrHfNbTi)5 has been synthesized via two-step high-energy mechanical processing (HEMP). We have optimized mechanical processing parameters for the formation of the TaZrHfNbTi high-entropy alloy (HEA)as a precursor for the synthesis of the mixed carbidefrom a metal powder mixture. HEMP of a mixture of Ta, Zr, Hf, Nb, and Ti powders in an AGO-2 planetary mill for 15 min at 90g leads to the formation of a TaZrHfNbTi HEA with an imperfect crystal structure. The time needed for obtaining the multielement carbide (TaZrHfNbTi)5 by milling a mixture of the metallic HEA and carbon black is 30 min. The thermal stability of the resultant carbide has been studied by high-temperature X-ray diffraction. The results demonstrate that the multielement carbide (TaZrHfNbTi)5 is stable in the range 8001200C at an isothermal holding time of 5 h, without precipitation of individual carbide phases. Exposure to temperatures above 1000C under dynamic vacuum leads to partial oxidation of (TaZrHfNbTi)5.

Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B., Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng., A, 2004, vols. 375377, pp. 213218.https://doi.org/10.1016/j.msea.2003.10.25

Varalakshmi, S., Kamaraj, M., and Murty, B.S., Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying, J. Alloys Compd., 2008, vol. 460, nos. 12, pp.253257.

Kochetov, N.A., Rogachev, A.S., Shchukin, A.S., Vadchenko, S.G., and Kovalev, I.D., Mechanical alloying with the partial amorphization of the FeCrCoNiMn multicomponent powder mixture and its spark plasma sintering to produce a compact high-entropy material, Russ. J. Non-Ferrous Met., 2018, no. 2, pp. 268273.https://doi.org/10.3103/S106782121903009X

Rogachev, A.S., Vadchenko, S.G., Kochetov, N.A., Rouvimov, S., Kovalev, D.Yu., Shchukin, A.S., Moskovskikh, D.O., Nepapushev, A.A., and Mukasyan, A.S., Structure and properties of equiatomic CoCrFeNiMn alloy fabricated by high-energy ball milling and spark plasma sintering, J. Alloys Compd., 2019, vol. 805, pp. 12371245.https://doi.org/10.1016/j.jallcom.2019.07.195

Prusa, F., Senkova, A., Kucera, V., Capek, J., and Vojtech, D., Properties of high strength ultrafine-grained CoCrFeNiMn high-entropy alloy prepared by short-term mechanical alloying and spark plasma sintering, Mater. Sci. Eng., A, 2018, vol. 734, pp. 341352.

Rogachev, A.S., Vadchenko, S.G., Kochetov, N.A., Kovalev, D.Yu., Kovalev, I.D., Shchukin, A.S., Gryadunov, A.N., Baras, F., and Politano, O., Combustion synthesis of TiC-based ceramicmetal composites with high entropy alloy binder, J. Eur. Ceram. Soc., 2020, vol. 40, pp. 25272532.https://doi.org/10.1016/j.jeurceramsoc.2019.11.059

Velo, I.L., Gotor, F.J., Alcala, M.D., Real, C., and Cordoba, J.M., Fabrication and characterization of WCHEA cemented carbide based on the CoCrFeNiMn high entropy alloy, J. Alloys Compd., 2018, vol. 746, pp.18.https://doi.org/10.1016/j.jallcom.2018.02.292

Zhu, G., Liu, Y., and Ye, J., Early high-temperature oxidation behavior of Ti(C,N)-based cermets with multi-component AlCoCrFeNi high-entropy alloy binder, Int. J. Refract. Met. Hard. Mater., 2014, vol. 44, pp. 3541.https://doi.org/10.1016/j.ijrmhm.2014.01.005

Fu, Z. and Koc, R., Ultrafine TiB2TiNiFeCrCoAl high-entropy alloy composite with enhanced mechanical properties, Mater. Sci. Eng., A, 2017, vol. 702, pp.184188.https://doi.org/10.1016/j.msea.2017.07.008

Rogachev, A.S., Gryadunov, A.N., Kochetov, N.A., Shchukin, A.S., Baras, F., and Politano, O., High-entropy-alloy binder for TiC-based cemented carbide by SHS method, Int. J. Self-Propag. High-Temp. Synth., 2019, vol. 28, pp. 196198.https://doi.org/10.3103/S106 17

De la Obra, A.G., Aviles, M.A., Torres, Y., Chicardi, E., and Gotor, F.J., A new family of cermets: chemically complex but microstructurally simple, Int. J. Refract. Met. Hard. Mater., 2017, vol. 63, pp. 1725.https://doi.org/10.1016/j.ijrmhm.2016.04.011

Zhang, K.B., Fu, Z.Y., Zhang, J.Y., Shi, J., Wang, W.M., Wang, H., Wang, Y.C., and Zhang, Q.J., Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying, J. Alloys Compd., 2009, vol. 485, nos. 12, pp. L31L34.

Dusza, J., vec, P., Girman, V., Sedlk, R., Castle, E.G., Csandi, T., Kovalkov, A., and Reece, M.J., Microstructure of (HfTaZrNb)C high-entropy carbide at micro and nano/atomic level, J. Eur. Ceram. Soc., 2018, vol. 38, pp. 43034307.

Braic, V., Vladescu, A., Balaceanu, M., Luculescu,C.R., and Braic, M., Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings, Surf. Coat. Technol., 2012, vol. 211, pp. 117121.https://doi.org/10.1016/j.surfcoat.2011.09.033

Zhang, Q., Zhang, J., Li, N., and Chen, W., Understanding the electronic structure, mechanical properties, and thermodynamic stability of (TiZrHfNbTa)C combined experiments and first-principles simulation, J. Appl. Phys., 2019, vol. 126, no. 2, paper 025101.

Yan, X., Constantin, L., Lu, Y.F., Silvain, J.-F., Nastas, M., and Cui, B., (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity, J. Am. Ceram. Soc., 2018, vol. 101, no. 10, pp. 44864491.https://doi.org/10.1111/jace.15779

Kochetov, N.A. and Seplyarskii, B.S., Effect of mechanical activation of granulated and powdered Ni + Al mixtures on flame-propagation rates and sample elongation in combustion, Russ. J. Phys. Chem. B, 2018, vol.12, no. 5, pp. 883889.https://doi.org/10.1134/S 50172

Kovalev, I.D. and Kochetov, N.A., An X-ray diffraction study of mechanical activation-induced structural changes in Ni + Al mixtures containing nickel powders prepared by different techniques, Inorg. Mater., 2019, vol. 55, no. 2, pp. 191194.https://doi.org/10.1134/S0020 5

Kochetov, N.A. and Vadchenko, C.G., Effect of the time of mechanical activation of a Ti + 2B mixture on combustion of cylindrical samples and thin foils, Combust., Explos., Shock Waves, 2015, vol. 51, no. 4, pp.467471.https://doi.org/10.1134/S0010508215040103

Avvakumov, E.G., Fundamentalnye osnovy mekhanicheskoi aktivatsii, mekhanosinteza i mekhanokhimicheskikh tekhnologii (Basic Principles of Mechanical Activation, Mechanosynthesis, and Mechanochemical Processing), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2009.

Kochetov, N.A., Kovalev, I.D. Synthesis and Thermal Stability of the Multielement Carbide (TaZrHfNbTi)5 . Inorg Mater 57, 813 (2021). https://doi.org/10.1134/S0020 9

Related Equipments