impact stress in ball mill

ball mills

ball mills

In all ore dressing and milling Operations, including flotation, cyanidation, gravity concentration, and amalgamation, the Working Principle is to crush and grind, often with rob mill & ball mills, the ore in order to liberate the minerals. In the chemical and process industries, grinding is an important step in preparing raw materials for subsequent treatment.In present day practice, ore is reduced to a size many times finer than can be obtained with crushers. Over a period of many years various fine grinding machines have been developed and used, but the ball mill has become standard due to its simplicity and low operating cost.

A ball millefficiently operated performs a wide variety of services. In small milling plants, where simplicity is most essential, it is not economical to use more than single stage crushing, because the Steel-Head Ball or Rod Mill will take up to 2 feed and grind it to the desired fineness. In larger plants where several stages of coarse and fine crushing are used, it is customary to crush from 1/2 to as fine as 8 mesh.

Many grinding circuits necessitate regrinding of concentrates or middling products to extremely fine sizes to liberate the closely associated minerals from each other. In these cases, the feed to the ball mill may be from 10 to 100 mesh or even finer.

Where the finished product does not have to be uniform, a ball mill may be operated in open circuit, but where the finished product must be uniform it is essential that the grinding mill be used in closed circuit with a screen, if a coarse product is desired, and with a classifier if a fine product is required. In most cases it is desirable to operate the grinding mill in closed circuit with a screen or classifier as higher efficiency and capacity are obtained. Often a mill using steel rods as the grinding medium is recommended, where the product must have the minimum amount of fines (rods give a more nearly uniform product).

Often a problem requires some study to determine the economic fineness to which a product can or should be ground. In this case the 911Equipment Company offers its complete testing service so that accurate grinding mill size may be determined.

Until recently many operators have believed that one particular type of grinding mill had greater efficiency and resulting capacity than some other type. However, it is now commonly agreed and accepted that the work done by any ballmill depends directly upon the power input; the maximum power input into any ball or rod mill depends upon weight of grinding charge, mill speed, and liner design.

The apparent difference in capacities between grinding mills (listed as being the same size) is due to the fact that there is no uniform method of designating the size of a mill, for example: a 5 x 5 Ball Mill has a working diameter of 5 inside the liners and has 20 per cent more capacity than all other ball mills designated as 5 x 5 where the shell is 5 inside diameter and the working diameter is only 48 with the liners in place.

Ball-Rod Mills, based on 4 liners and capacity varying as 2.6 power of mill diameter, on the 5 size give 20 per cent increased capacity; on the 4 size, 25 per cent; and on the 3 size, 28 per cent. This fact should be carefully kept in mind when determining the capacity of a Steel- Head Ball-Rod Mill, as this unit can carry a greater ball or rod charge and has potentially higher capacity in a given size when the full ball or rod charge is carried.

A mill shorter in length may be used if the grinding problem indicates a definite power input. This allows the alternative of greater capacity at a later date or a considerable saving in first cost with a shorter mill, if reserve capacity is not desired. The capacities of Ball-Rod Mills are considerably higher than many other types because the diameters are measured inside the liners.

The correct grinding mill depends so much upon the particular ore being treated and the product desired, that a mill must have maximum flexibility in length, type of grinding medium, type of discharge, and speed.With the Ball-Rod Mill it is possible to build this unit in exact accordance with your requirements, as illustrated.

To best serve your needs, the Trunnion can be furnished with small (standard), medium, or large diameter opening for each type of discharge. The sketch shows diagrammatic arrangements of the four different types of discharge for each size of trunnion opening, and peripheral discharge is described later.

Ball-Rod Mills of the grate discharge type are made by adding the improved type of grates to a standard Ball-Rod Mill. These grates are bolted to the discharge head in much the same manner as the standard headliners.

The grates are of alloy steel and are cast integral with the lifter bars which are essential to the efficient operation of this type of ball or rod mill. These lifter bars have a similar action to a pump:i. e., in lifting the product so as to discharge quickly through the mill trunnion.

These Discharge Grates also incorporate as an integral part, a liner between the lifters and steel head of the ball mill to prevent wear of the mill head. By combining these parts into a single casting, repairs and maintenance are greatly simplified. The center of the grate discharge end of this mill is open to permit adding of balls or for adding water to the mill through the discharge end.

Instead of being constructed of bars cast into a frame, Grates are cast entire and have cored holes which widen toward the outside of the mill similar to the taper in grizzly bars. The grate type discharge is illustrated.

The peripheral discharge type of Ball-Rod Mill is a modification of the grate type, and is recommended where a free gravity discharge is desired. It is particularly applicable when production of too many fine particles is detrimental and a quick pass through the mill is desired, and for dry grinding.

The drawings show the arrangement of the peripheral discharge. The discharge consists of openings in the shell into which bushings with holes of the desired size are inserted. On the outside of the mill, flanges are used to attach a stationary discharge hopper to prevent pulp splash or too much dust.

The mill may be operated either as a peripheral discharge or a combination or peripheral and trunnion discharge unit, depending on the desired operating conditions. If at any time the peripheral discharge is undesirable, plugs inserted into the bushings will convert the mill to a trunnion discharge type mill.

Unless otherwise specified, a hard iron liner is furnished. This liner is made of the best grade white iron and is most serviceable for the smaller size mills where large balls are not used. Hard iron liners have a much lower first cost.

Electric steel, although more expensive than hard iron, has advantage of minimum breakage and allows final wear to thinner section. Steel liners are recommended when the mills are for export or where the source of liner replacement is at a considerable distance.

Molychrome steel has longer wearing qualities and greater strength than hard iron. Breakage is not so apt to occur during shipment, and any size ball can be charged into a mill equipped with molychrome liners.

Manganese liners for Ball-Rod Mills are the world famous AMSCO Brand, and are the best obtainable. The first cost is the highest, but in most cases the cost per ton of ore ground is the lowest. These liners contain 12 to 14% manganese.

The feed and discharge trunnions are provided with cast iron or white iron throat liners. As these parts are not subjected to impact and must only withstand abrasion, alloys are not commonly used but can be supplied.

Gears for Ball-Rod Mills drives are furnished as standard on the discharge end of the mill where they are out of the way of the classifier return, scoop feeder, or original feed. Due to convertible type construction the mills can be furnished with gears on the feed end. Gear drives are available in two alternative combinations, which are:

All pinions are properly bored, key-seated, and pressed onto the steel countershaft, which is oversize and properly keyseated for the pinion and drive pulleys or sheaves. The countershaft operates on high grade, heavy duty, nickel babbitt bearings.

Any type of drive can be furnished for Ball-Rod Mills in accordance with your requirements. Belt drives are available with pulleys either plain or equipped with friction clutch. Various V- Rope combinations can also be supplied.

The most economical drive to use up to 50 H. P., is a high starting torque motor connected to the pinion shaft by means of a flat or V-Rope drive. For larger size motors the wound rotor (slip ring) is recommended due to its low current requirement in starting up the ball mill.

Should you be operating your own power plant or have D. C. current, please specify so that there will be no confusion as to motor characteristics. If switches are to be supplied, exact voltage to be used should be given.

Even though many ores require fine grinding for maximum recovery, most ores liberate a large percentage of the minerals during the first pass through the grinding unit. Thus, if the free minerals can be immediately removed from the ball mill classifier circuit, there is little chance for overgrinding.

This is actually what has happened wherever Mineral Jigs or Unit Flotation Cells have been installed in the ball mill classifier circuit. With the installation of one or both of these machines between the ball mill and classifier, as high as 70 per cent of the free gold and sulphide minerals can be immediately removed, thus reducing grinding costs and improving over-all recovery. The advantage of this method lies in the fact that heavy and usually valuable minerals, which otherwise would be ground finer because of their faster settling in the classifier and consequent return to the grinding mill, are removed from the circuit as soon as freed. This applies particularly to gold and lead ores.

Ball-Rod Mills have heavy rolled steel plate shells which are arc welded inside and outside to the steel heads or to rolled steel flanges, depending upon the type of mill. The double welding not only gives increased structural strength, but eliminates any possibility of leakage.

Where a single or double flanged shell is used, the faces are accurately machined and drilled to template to insure perfect fit and alignment with the holes in the head. These flanges are machined with male and female joints which take the shearing stresses off the bolts.

The Ball-Rod Mill Heads are oversize in section, heavily ribbed and are cast from electric furnace steel which has a strength of approximately four times that of cast iron. The head and trunnion bearings are designed to support a mill with length double its diameter. This extra strength, besides eliminating the possibility of head breakage or other structural failure (either while in transit or while in service), imparts to Ball-Rod Mills a flexibility heretofore lacking in grinding mills. Also, for instance, if you have a 5 x 5 mill, you can add another 5 shell length and thus get double the original capacity; or any length required up to a maximum of 12 total length.

On Type A mills the steel heads are double welded to the rolled steel shell. On type B and other flanged type mills the heads are machined with male and female joints to match the shell flanges, thus taking the shearing stresses from the heavy machine bolts which connect the shell flanges to the heads.

The manhole cover is protected from wear by heavy liners. An extended lip is provided for loosening the door with a crow-bar, and lifting handles are also provided. The manhole door is furnished with suitable gaskets to prevent leakage.

The mill trunnions are carried on heavy babbitt bearings which provide ample surface to insure low bearing pressure. If at any time the normal length is doubled to obtain increased capacity, these large trunnion bearings will easily support the additional load. Trunnion bearings are of the rigid type, as the perfect alignment of the trunnion surface on Ball-Rod Mills eliminates any need for the more expensive self-aligning type of bearing.

The cap on the upper half of the trunnion bearing is provided with a shroud which extends over the drip flange of the trunnion and effectively prevents the entrance of dirt or grit. The bearing has a large space for wool waste and lubricant and this is easily accessible through a large opening which is covered to prevent dirt from getting into the bearing.Ball and socket bearings can be furnished.

Scoop Feeders for Ball-Rod Mills are made in various radius sizes. Standard scoops are made of cast iron and for the 3 size a 13 or 19 feeder is supplied, for the 4 size a 30 or 36, for the 5 a 36 or 42, and for the 6 a 42 or 48 feeder. Welded steel scoop feeders can, however, be supplied in any radius.

The correct size of feeder depends upon the size of the classifier, and the smallest feeder should be used which will permit gravity flow for closed circuit grinding between classifier and the ball or rod mill. All feeders are built with a removable wearing lip which can be easily replaced and are designed to give minimum scoop wear.

A combination drum and scoop feeder can be supplied if necessary. This feeder is made of heavy steel plate and strongly welded. These drum-scoop feeders are available in the same sizes as the cast iron feeders but can be built in any radius. Scoop liners can be furnished.

The trunnions on Ball-Rod Mills are flanged and carefully machined so that scoops are held in place by large machine bolts and not cap screws or stud bolts. The feed trunnion flange is machined with a shoulder for insuring a proper fit for the feed scoop, and the weight of the scoop is carried on this shoulder so that all strain is removed from the bolts which hold the scoop.

High carbon steel rods are recommended, hot rolled, hot sawed or sheared, to a length of 2 less than actual length of mill taken inside the liners. The initial rod charge is generally a mixture ranging from 1.5 to 3 in diameter. During operation, rod make-up is generally the maximum size. The weights per lineal foot of rods of various diameters are approximately: 1.5 to 6 lbs.; 2-10.7 lbs.; 2.5-16.7 lbs.; and 3-24 lbs.

Forged from the best high carbon manganese steel, they are of the finest quality which can be produced and give long, satisfactory service. Data on ball charges for Ball-Rod Mills are listed in Table 5. Further information regarding grinding balls is included in Table 6.

Rod Mills has a very define and narrow discharge product size range. Feeding a Rod Mill finer rocks will greatly impact its tonnage while not significantly affect its discharge product sizes. The 3.5 diameter rod of a mill, can only grind so fine.

Crushers are well understood by most. Rod and Ball Mills not so much however as their size reduction actions are hidden in the tube (mill). As for Rod Mills, the image above best expresses what is going on inside. As rocks is feed into the mill, they are crushed (pinched) by the weight of its 3.5 x 16 rods at one end while the smaller particles migrate towards the discharge end and get slightly abraded (as in a Ball Mill) on the way there.

We haveSmall Ball Mills for sale coming in at very good prices. These ball mills are relatively small, bearing mounted on a steel frame. All ball mills are sold with motor, gears, steel liners and optional grinding media charge/load.

Ball Mills or Rod Mills in a complete range of sizes up to 10 diameter x20 long, offer features of operation and convertibility to meet your exactneeds. They may be used for pulverizing and either wet or dry grindingsystems. Mills are available in both light-duty and heavy-duty constructionto meet your specific requirements.

All Mills feature electric cast steel heads and heavy rolled steelplate shells. Self-aligning main trunnion bearings on large mills are sealedand internally flood-lubricated. Replaceable mill trunnions. Pinion shaftbearings are self-aligning, roller bearing type, enclosed in dust-tightcarrier. Adjustable, single-unit soleplate under trunnion and drive pinionsfor perfect, permanent gear alignment.

Ball Mills can be supplied with either ceramic or rubber linings for wet or dry grinding, for continuous or batch type operation, in sizes from 15 x 21 to 8 x 12. High density ceramic linings of uniform hardness male possible thinner linings and greater and more effective grinding volume. Mills are shipped with liners installed.

Complete laboratory testing service, mill and air classifier engineering and proven equipment make possible a single source for your complete dry-grinding mill installation. Units available with air swept design and centrifugal classifiers or with elevators and mechanical type air classifiers. All sizes and capacities of units. Laboratory-size air classifier also available.

A special purpose batch mill designed especially for grinding and mixing involving acids and corrosive materials. No corners mean easy cleaning and choice of rubber or ceramic linings make it corrosion resistant. Shape of mill and ball segregation gives preferential grinding action for grinding and mixing of pigments and catalysts. Made in 2, 3 and 4 diameter grinding drums.

Nowadays grinding mills are almost extensively used for comminution of materials ranging from 5 mm to 40 mm (3/161 5/8) down to varying product sizes. They have vast applications within different branches of industry such as for example the ore dressing, cement, lime, porcelain and chemical industries and can be designed for continuous as well as batch grinding.

Ball mills can be used for coarse grinding as described for the rod mill. They will, however, in that application produce more fines and tramp oversize and will in any case necessitate installation of effective classification.If finer grinding is wanted two or three stage grinding is advisable as for instant primary rod mill with 75100 mm (34) rods, secondary ball mill with 2540 mm(11) balls and possibly tertiary ball mill with 20 mm () balls or cylpebs.To obtain a close size distribution in the fine range the specific surface of the grinding media should be as high as possible. Thus as small balls as possible should be used in each stage.

The principal field of rod mill usage is the preparation of products in the 5 mm0.4 mm (4 mesh to 35 mesh) range. It may sometimes be recommended also for finer grinding. Within these limits a rod mill is usually superior to and more efficient than a ball mill. The basic principle for rod grinding is reduction by line contact between rods extending the full length of the mill, resulting in selective grinding carried out on the largest particle sizes. This results in a minimum production of extreme fines or slimes and more effective grinding work as compared with a ball mill. One stage rod mill grinding is therefore suitable for preparation of feed to gravimetric ore dressing methods, certain flotation processes with slime problems and magnetic cobbing. Rod mills are frequently used as primary mills to produce suitable feed to the second grinding stage. Rod mills have usually a length/diameter ratio of at least 1.4.

Tube mills are in principle to be considered as ball mills, the basic difference being that the length/diameter ratio is greater (35). They are commonly used for surface cleaning or scrubbing action and fine grinding in open circuit.

In some cases it is suitable to use screened fractions of the material as grinding media. Such mills are usually called pebble mills, but the working principle is the same as for ball mills. As the power input is approximately directly proportional to the volume weight of the grinding media, the power input for pebble mills is correspondingly smaller than for a ball mill.

A dry process requires usually dry grinding. If the feed is wet and sticky, it is often necessary to lower the moisture content below 1 %. Grinding in front of wet processes can be done wet or dry. In dry grinding the energy consumption is higher, but the wear of linings and charge is less than for wet grinding, especially when treating highly abrasive and corrosive material. When comparing the economy of wet and dry grinding, the different costs for the entire process must be considered.

An increase in the mill speed will give a directly proportional increase in mill power but there seems to be a square proportional increase in the wear. Rod mills generally operate within the range of 6075 % of critical speed in order to avoid excessive wear and tangled rods. Ball and pebble mills are usually operated at 7085 % of critical speed. For dry grinding the speed is usually somewhat lower.

The mill lining can be made of rubber or different types of steel (manganese or Ni-hard) with liner types according to the customers requirements. For special applications we can also supply porcelain, basalt and other linings.

The mill power is approximately directly proportional to the charge volume within the normal range. When calculating a mill 40 % charge volume is generally used. In pebble and ball mills quite often charge volumes close to 50 % are used. In a pebble mill the pebble consumption ranges from 315 % and the charge has to be controlled automatically to maintain uniform power consumption.

In all cases the net energy consumption per ton (kWh/ton) must be known either from previous experience or laboratory tests before mill size can be determined. The required mill net power P kW ( = ton/hX kWh/ton) is obtained from

Trunnions of S.G. iron or steel castings with machined flange and bearing seat incl. device for dismantling the bearings. For smaller mills the heads and trunnions are sometimes made in grey cast iron.

The mills can be used either for dry or wet, rod or ball grinding. By using a separate attachment the discharge end can be changed so that the mills can be used for peripheral instead of overflow discharge.

how to measure the impact forces in ball mills

how to measure the impact forces in ball mills

Of many physical parameters critical to design of grinding processes, impact of grinding media is among the most difficult to measure or predict. Yet impact of falling grinding balls, pebbles, or rods accomplishes the fine grinding essential to metallurgical recovery of most important minerals. Unfortunately, the same impacts that break ore fragments deform or crack grinding mill liners.

Design of an instrumented impact test ball for in-mill testing involved several considerations; survival of ball and instruments, retrieval of ball, maximizing generation of impact data, and fabrication of a ball capable of these ends.

Six Protect-A-Pak accelerometers were chosen to optimize data recovery per test, covering the expected impact range in reasonably small increments. Clusters of 3 units arranged in equilateral triangles in each ball half require a 72mm diameter cavity 51mm long. Geometry of the cavity requires a minimum sphere of 89mm to contain it and 10-15mm additional metal surrounding the compartment to provide strength. Final ball diameter was 140mm. The test ball must be substantially larger than standard 75mm balls in the Climax mills to be easily recovered and minimize chance of loss in the ball charge.

The ball was machined from alloy steel shafting and weighs 7.14kg with 6 accelerometers. Large grinding balls 89-127mm are common in larger mills and weight 2.9 8.4kg, a range which includes weight of the impact test ball.

Series I drop tests used a 76mm alloy steel grinding ball at 63HRC surface hardness with Protect-A-Pak accelerometers of several ratings cemented to a flat ground on the ball. The test ball, suspended in a light wire harness, was dropped from gradually increased heights until the accelerometers responded in hitting a worn 100kg mill end liner of 20%Cr 2%Mo 1%Cu martensitic iron alloy.

Test Series II with same equipment but with the liner plate covered with a single-particle layer of sized Climax ball mill feed material (high-silica granite molybdenum sulfide ore, Bond Work Index 10.1-10.8) in Tyler screen sizes +100-65 mesh, +65-10 mesh, +10-3 mesh, +3 mesh-9.5mm, and greater than 9.5mm, were tested. A fresh layer of ore material was used for each drop. Larger, resettable Protect-A-Pak Omni-G accelerometers measured decelerations.

Data from drop ball tests seem to be fairly well confirmed by in-mill tests with the hollow instrumented ball which, although heavier, is larger in diameter, less convex, softer steel, and strikes either the tumbling mass of ore and balls or descending mill liners. The ball was placed and recovered in the feed end of the mill where impact is known to be less severe.

the use performance and mechanical properties of ball mill steel-steel balls_cylpebs_ grinding balls_ high chrome steel balls- fareast steel balls trading ltd

the use performance and mechanical properties of ball mill steel-steel balls_cylpebs_ grinding balls_ high chrome steel balls- fareast steel balls trading ltd

The movement, the stress state and the working condition of the ball of the ball mill are decided by the performance of the steel ball. According to the mechanical analysis and wear failure mechanism of ball mill ball, the wear resistance of steel ball should be based on the hardness and toughness. Therefore, the mechanical properties of the steel ball should be:

Under the condition of wet grinding, the steel ball material has good corrosion resistance according to the nature of the medium. Because of the different wear mechanism to the steel ball wear resistance, therefore, the mechanical properties of the steel ball should be based on different types of wear and conditions of the conditions have been focused.

estimation of shear rates inside a ball mill - sciencedirect

estimation of shear rates inside a ball mill - sciencedirect

Grinding slurries are known to be non-Newtonian. For such suspensions, slurry viscosity is not a constant, but is a function of shear rate. This study was aimed at the derivation of an estimate of a typical shear rate range inside a ball mill, in order to determine appropriate values of apparent viscosity for studies of the effects of rheology on grinding. Shear rates were estimated by considering the ball charge motion inside the mill. Two types of ball motion, cascading and cataracting, were taken into account. For the first type of motion, Morrell's power model approach [Morrell, S., 1996. Power draw of wet tumbling mills and its relationship to charge dynamics: Part 1. A continuum approach to mathematical modelling of mill power draw. Trans. I.M.M. 105, C43C53] was employed. This approach considers the mill charge to be comprised of layers or `shells' which slide against one another. The relative velocity between layers of the charge was calculated. Distance over which this change in velocity occurs was determined from the slurry volume filling the interstices of the charge and from the contact area between the slurry and ball surfaces. Shear rate defined as the velocity gradient between layers of the charge in the cascading motion was hence estimated to be 13 s1 as a lower limit of the shear rate range for a ball mill of 4.57 m in diameter. For the second type of motion, the velocity of a free-flight ball striking the mill shell was resolved into two components, and a typical shear rate of 730 s1 was estimated from the tangential velocity of the ball for the same ball mill. It is therefore recommended that a shear rate in the range of 13730 s1 be used to characterise the apparent viscosities of slurry in grinding applications.

stirred media mills in the mining industry: material grindability, energy-size relationships, and operating conditions - sciencedirect

stirred media mills in the mining industry: material grindability, energy-size relationships, and operating conditions - sciencedirect

Stirred media mills are used by the mining industry for ultrafine grinding to enhance liberation, and to decrease particle sizes of industrial minerals to tailor functional properties. This review describes stirred media mill technologies and operating principles, and summarises stress intensity theory which can be used for selecting efficient operating conditions. For fine and ultrafine grinding, the Bond work index is an inappropriate measure of grindability, so alternatives are discussed. Using literature data, the variation in the appropriate energy-size models between examples is assessed, and rationalised with stress intensity theory. A Rittinger operating index was found to be the best choice for assessing operation efficiency. Finally, a modification of stress intensity theory that tunes operating conditions based upon material properties, and the fmat mastercurve theory are discussed, with the conclusions that, although promising, laboratory-scale milling tests remain the most practical method of assessing material grindability and predicting industrial energy requirements.

Lewis Taylor graduated with an M.Eng in Chemical Engineering (University of Birmingham, UK). He is currently undertaking a PhD with the University of Birmingham and FiberLean Technologies on producing nanocellulose with a stirred media mill.

David Skuse is VP Technology for FiberLean Technologies. He has a BSc in Chemistry (University of Wales, UK) and a PhD in Colloid and Polymer Chemistry (University of Bristol, UK). Previously, David worked as a Research Fellow at the University of British Columbia where his projects were funded by MRC Canada, Domtar and NASA. He then worked for 26 years for Imerys. He joined FiberLean Technologies on its formation in 2016. He is an Honorary Professor in the Department of Chemical Engineering at the University of Birmingham, UK and is a Fellow of the Royal Society of Chemistry.

Stuart Blackburn has worked in the field of materials processing for 35 years. He started his career working for Foseco developing of fine zirconia powders by a fusion and comminution route. The process was eventually awarded the Queen's award for Innovation in 2001. In 1990 he joined the University of Birmingham, working on the processing of highly loaded suspensions. He was awarded the British Foundry Medal in 2007 (ICME) and the Ivor Jenkins Medal for contributions in the field of particulate processing in 2008 (IOM3). Today his work remains focused on particulate processing in the casting and chemical industries.

Richard Greenwood graduated with a BSc in Chemistry from Bristol University and studied for a PhD at Imperial College, London. He is currently the programme manager for the CDT in Formulation Engineering at the School of Chemical Engineering, University of Birmingham. He is currently a Fellow of the Royal Society of Chemistry and sits on the RSC / SCI joint colloids committee where is organiser of the UK Colloids conference.

fine impact mills | hosokawa alpine

fine impact mills | hosokawa alpine

There is no such thing as a universal mill that optimally meets every requirement in terms of fineness, throughput, energy efficiency, wear, contamination-free grinding and cleaning, etc. For this reason, ALPINE offers a wide spectrum of different designs which enables an optimal solution to be found for each problem specification.

experimental investigations and modelling of the ball motion in planetary ball mills - sciencedirect

experimental investigations and modelling of the ball motion in planetary ball mills - sciencedirect

Planetary ball mills feature attractive properties, like the possibility of dry or wet operation, straightforward handling, cleanability and moderate costs. Consequently they are very well suited for lab scale process development in diverse industries, including pharmaceuticals and new materials. A number of questions still remain unanswered regarding this mill type. These include the stress conditions as well as transfer of the grinding results to other types of mills with free moving balls, such as stirred media mills, which can be built in large scales and operated continuously.

In order to measure the ball motion and, thus, the stress conditions, a planetary ball mill was equipped with a high speed video camera, so that the grinding ball motion during the comminution process can be recorded and analysed. The influence of important process parameters on the ball motion pattern was assessed in this study, namely speed ratio, ball filling ratio and friction conditions, the latter by applying different mill feeds. The experimental results show considerable influences of the ball filling ratio and friction conditions. The measured ball motion patterns differ significantly from ball trajectories which were calculated using kinetic equations proposed in older publications.

In addition to the measurements the ball motion was simulated using a three dimensional Discrete Element Model (DEM). An attempt was made to account for mill feed via altered friction coefficients. Correlations of the DEM results and experimental findings at different operating conditions show a good agreement. Based on simulation data the frequency distribution of the stress energies in the mill could be calculated and compared for different operating conditions.

Important process parameters influencing the ball motion pattern in a planetary ball mill were assessed by image analysis. Experimental results show considerable influences of ball filling ratio and friction conditions. The ball motion was simulated by the Discrete Element Method. Based on simulation data the frequency distribution of the stress energies could be calculated and compared for different operating conditions.Download : Download full-size image

No considerable influence of speed ratio k in the range 3

Related Equipments