iron ore processing plant equipment in iron ore processing

iron ore processing plant

iron ore processing plant

Xinhai mineral processing equipment mainly include: grinding equipment, flotation equipment, dewatering equipment, magnetic separation equipment, and so on. Some of the equipment is Xinhai independent research and development, and has been awarded national patent. View details

Gold CIP Production Line adsorbs gold from cyaniding pulp by active carbon including 7 steps: leaching pulp preparation, cyaniding leaching, carbon adsorption, gold loaded carbon desorption, pregnant solution electrodeposit, carbon acid regeneration, leaching pulp. View details

At present, there are about 300 kinds of iron-bearing minerals found in nature. According to the classification of chemical composition, the common iron ore mainly includes magnetite, hematite, limonite and siderite. Different properties of iron ore, its processing technology is naturally different. Below, we will explain to you the different types of iron extraction processes.

According to the different types of iron-bearing species, the magnetite can be divided into single magnetite and polymetallic magnetite. In general, the low intensity magnetic separation process is often used for the separation of single magnetite, while the combined process is often used for the separation of polymetallic magnetite.

Most of the iron minerals in the single magnetite ore are magnetite, which have simple composition, strong magnetism, easy grinding and easy separation, so the low intensity magnetic separation process is often used for separation of single magnetite.

The gangue of the polymetallic magnetite ore often contains silicate or carbonate minerals, and is associated with cobalt-pyrite, chalcopyrite and apatite. Generally, the combined process of low intensity magnetic separation and flotation can be used to deal with the polymetallic magnetite.

As a weakly magnetic iron ore, the hematite contains a small amount of magnetite, uneven dissemination size of impurity and more fine particles. Due to its complex ore properties, the gravity separation, flotation, magnetic separation and the combined process are often used for separation.

Limonite is a typical refractory iron ore, which is easy to slime and has poor separation index. The common limonite extraction processes mainly include gravity separation, magnetic separation, flotation and combined process.

In general, the limonite gravity separation is often used to treat the coarse-grained disseminated ores. This limonite extraction method has the advantages of simple equipment, low cost and less power consumption, but its recovery rate is low and grade of tailings is high.

The single flotation method has a good recovery effect for the fine iron minerals, but limonite is easy to slime, which can seriously affect the flotation effect. Therefore, the desliming or strengthening slime disperse can be adopted before the flotation.

As a common weak magnetic iron ore, siderite is very difficult to extracted. At present, the common siderite extraction processes mainly include gravity separation, high intensity magnetic separation, flotation, magnetic roasting-low intensity magnetic separation process.

The gravity separation process is suitable for the coarse and medium-grain disseminated siderite. There are two main siderite gravity separation processes: heavy medium separation and jigging separation.

Gravity separation characterized by high efficiency and energy saving, which is most highly used in mineral process, since it is strongly practicability and has more effects than separation in mining efficiency and mining index. For less investment and mineral cost as well as little pollution, gravity separation is more suitable for coarse particle size pyrite processing.

As flotation also can be used for pyrite ore separation, though flotation separation has deficiency with considerable large investment in equipment, higher mining cost, while better efficiency and index in mining with simple flotation reagents, so flotation methods can be used for low grade pyrite ore.

Process: Two-stage closed-circuit crushing and screening - two-stage closed-circuit grinding and classification - magnetic separation process of one-stage roughing and three-stage concentration - concentrates and tailings filtering and dewatering.

beneficiation of iron ore

beneficiation of iron ore

Beneficiation of Iron Ore and the treatment of magnetic iron taconites, stage grinding and wet magnetic separation is standard practice. This also applies to iron ores of the non-magnetic type which after a reducing roast are amenable to magnetic separation. All such plants are large tonnage operations treating up to 50,000 tons per day and ultimately requiring grinding as fine as minus 500-mesh for liberation of the iron minerals from the siliceous gangue.

Magnetic separation methods are very efficient in making high recovery of the iron minerals, but production of iron concentrates with less than 8 to 10% silica in the magnetic cleaning stages becomes inefficient. It is here that flotation has proven most efficient. Wet magnetic finishers producing 63 to 64% Fe concentrates at 50-55% solids can go directly to the flotation section for silica removal down to 4 to 6% or even less. Low water requirements and positive silica removal with low iron losses makes flotation particularly attractive. Multistage cleaning steps generally are not necessary. Often roughing off the silica froth without further cleaning is adequate.

The iron ore beneficiation flowsheet presented is typical of the large tonnage magnetic taconite operations. Multi-parallel circuits are necessary, but for purposes of illustration and description a single circuit is shown and described.

The primary rod mill discharge at about minus 10- mesh is treated over wet magnetic cobbers where, on average magnetic taconite ore, about 1/3of the total tonnage is rejected as a non-magnetic tailing requiring no further treatment. The magnetic product removed by the cobbers may go direct to the ball mill or alternately may be pumped through a cyclone classifier. Cyclone underflows usually all plus 100 or 150 mesh, goes to the ball mill for further grinding. The mill discharge passes through a wet magnetic separator for further upgrading and also rejection of additional non-magnetic tailing. The ball mill and magnetic cleaner and cyclone all in closed circuit produce an iron enriched magnetic product 85 to 90% minus 325 mesh which is usually the case on finely disseminated taconites.

The finely ground enriched product from the initial stages of grinding and magnetic separation passes to a hydroclassifier to eliminate the large volume of water in the overflow. Some finely divided silica slime is also eliminated in this circuit. The hydroclassifier underflow is generally subjected to at least 3 stages of magnetic separation for further upgrading and production of additional final non-magnetic tailing. Magnetic concentrate at this point will usually contain 63 to 64% iron with 8 to 10% silica. Further silica removal at this point by magnetic separation becomes rather inefficient due to low magnetic separator capacity and their inability to reject middling particles.

The iron concentrate as it comes off the magnetic finishers is well flocculated due to magnetic action and usually contains 50-55% solids. This is ideal dilution for conditioning ahead of flotation. For best results it is necessary to pass the pulp through a demagnetizing coil to disperse the magnetic floes and thus render the pulp more amenable to flotation.

Feed to flotation for silica removal is diluted with fresh clean water to 35 to 40% solids. Being able to effectively float the silica and iron silicates at this relatively high solid content makes flotation particularly attractive.

For this separation Sub-A Flotation Machines of the open or free-flow type for rougher flotation are particularly desirable. Intense aeration of the deflocculated and dispersed pulp is necessary for removal of the finely divided silica and iron silicates in the froth product. A 6-cell No. 24 Free-FlowFlotation Machine will effectively treat 35 to 40 LTPH of iron concentrates down to the desired limit, usually 4 to 6% SiO2. Loss of iron in the froth is low. The rough froth may be cleaned and reflotated or reground and reprocessed if necessary.

A cationic reagent is usually all that is necessary to effectively activate and float the silica from the iron. Since no prior reagents have come in contact with thethoroughly washed and relatively slime free magnetic iron concentrates, the cationic reagent is fast acting and in somecases no prior conditioning ahead of the flotation cells is necessary.

A frother such as Methyl Isobutyl Carbinol or Heptinol is usually necessary to give a good froth condition in the flotation circuit. In some cases a dispersant such as Corn Products gum (sometimes causticized) is also helpful in depressing the iron. Typical requirements may be as follows:

One operation is presently using Aerosurf MG-98 Amine at the rate of .06 lbs/ton and 0.05 lbs/ton of MIBC (methyl isobutyl carbinol). Total reagent cost in this case is approximately 5 cents per ton of flotation product.

The high grade iron product, low in silica, discharging from the flotation circuit is remagnetized, thickened and filtered in the conventional manner with a disc filter down to 8 to 10% moisture prior to treatment in the pelletizing plant. Both the thickener and filter must be heavy duty units. Generally, in the large tonnage concentrators the thickener underflow at 70 to 72% solids is stored in large Turbine Type Agitators. Tanks up to 50 ft. in diameter x 40 ft. deep with 12 ft. diameter propellers are used to keep the pulp uniform. Such large units require on the order of 100 to 125 HP for thorough mixing the high solids ahead of filtration.

In addition to effective removal of silica with low water requirements flotation is a low cost separation, power-wise and also reagent wise. Maintenance is low since the finely divided magnetic taconite concentrate has proven to be rather non-abrasive. Even after a years operation very little wear is noticed on propellers and impellers.

A further advantage offered by flotation is the possibility of initially grinding coarser and producing a middling in the flotation section for retreatment. In place of initially grinding 85 to 90% minus 325, the grind if coarsened to 80-85% minus 325-mesh will result in greater initial tonnage treated per mill section. Considerable advantage is to be gained by this approach.

Free-Flow Sub-A Flotation is a solution to the effective removal of silica from magnetic taconite concentrates. Present plants are using this method to advantage and future installations will resort more and more to production of low silica iron concentrate for conversion into pellets.

iron processing | britannica

iron processing | britannica

iron processing, use of a smelting process to turn the ore into a form from which products can be fashioned. Included in this article also is a discussion of the mining of iron and of its preparation for smelting.

Iron (Fe) is a relatively dense metal with a silvery white appearance and distinctive magnetic properties. It constitutes 5 percent by weight of the Earths crust, and it is the fourth most abundant element after oxygen, silicon, and aluminum. It melts at a temperature of 1,538 C (2,800 F).

Iron is allotropicthat is, it exists in different forms. Its crystal structure is either body-centred cubic (bcc) or face-centred cubic (fcc), depending on the temperature. In both crystallographic modifications, the basic configuration is a cube with iron atoms located at the corners. There is an extra atom in the centre of each cube in the bcc modification and in the centre of each face in the fcc. At room temperature, pure iron has a bcc structure referred to as alpha-ferrite; this persists until the temperature is raised to 912 C (1,674 F), when it transforms into an fcc arrangement known as austenite. With further heating, austenite remains until the temperature reaches 1,394 C (2,541 F), at which point the bcc structure reappears. This form of iron, called delta-ferrite, remains until the melting point is reached.

The pure metal is malleable and can be easily shaped by hammering, but apart from specialized electrical applications it is rarely used without adding other elements to improve its properties. Mostly it appears in iron-carbon alloys such as steels, which contain between 0.003 and about 2 percent carbon (the majority lying in the range of 0.01 to 1.2 percent), and cast irons with 2 to 4 percent carbon. At the carbon contents typical of steels, iron carbide (Fe3C), also known as cementite, is formed; this leads to the formation of pearlite, which in a microscope can be seen to consist of alternate laths of alpha-ferrite and cementite. Cementite is harder and stronger than ferrite but is much less malleable, so that vastly differing mechanical properties are obtained by varying the amount of carbon. At the higher carbon contents typical of cast irons, carbon may separate out as either cementite or graphite, depending on the manufacturing conditions. Again, a wide range of properties is obtained. This versatility of iron-carbon alloys leads to their widespread use in engineering and explains why iron is by far the most important of all the industrial metals.

There is evidence that meteorites were used as a source of iron before 3000 bc, but extraction of the metal from ores dates from about 2000 bc. Production seems to have started in the copper-producing regions of Anatolia and Persia, where the use of iron compounds as fluxes to assist in melting may have accidentally caused metallic iron to accumulate on the bottoms of copper smelting furnaces. When iron making was properly established, two types of furnace came into use. Bowl furnaces were constructed by digging a small hole in the ground and arranging for air from a bellows to be introduced through a pipe or tuyere. Stone-built shaft furnaces, on the other hand, relied on natural draft, although they too sometimes used tuyeres. In both cases, smelting involved creating a bed of red-hot charcoal to which iron ore mixed with more charcoal was added. Chemical reduction of the ore then occurred, but, since primitive furnaces were incapable of reaching temperatures higher than 1,150 C (2,100 F), the normal product was a solid lump of metal known as a bloom. This may have weighed up to 5 kilograms (11 pounds) and consisted of almost pure iron with some entrapped slag and pieces of charcoal. The manufacture of iron artifacts then required a shaping operation, which involved heating blooms in a fire and hammering the red-hot metal to produce the desired objects. Iron made in this way is known as wrought iron. Sometimes too much charcoal seems to have been used, and iron-carbon alloys, which have lower melting points and can be cast into simple shapes, were made unintentionally. The applications of this cast iron were limited because of its brittleness, and in the early Iron Age only the Chinese seem to have exploited it. Elsewhere, wrought iron was the preferred material.

Although the Romans built furnaces with a pit into which slag could be run off, little change in iron-making methods occurred until medieval times. By the 15th century, many bloomeries used low shaft furnaces with water power to drive the bellows, and the bloom, which might weigh over 100 kilograms, was extracted through the top of the shaft. The final version of this kind of bloomery hearth was the Catalan forge, which survived in Spain until the 19th century. Another design, the high bloomery furnace, had a taller shaft and evolved into the 3-metre- (10-foot-) high Stckofen, which produced blooms so large they had to be removed through a front opening in the furnace.

The blast furnace appeared in Europe in the 15th century when it was realized that cast iron could be used to make one-piece guns with good pressure-retaining properties, but whether its introduction was due to Chinese influence or was an independent development is unknown. At first, the differences between a blast furnace and a Stckofen were slight. Both had square cross sections, and the main changes required for blast-furnace operation were an increase in the ratio of charcoal to ore in the charge and a taphole for the removal of liquid iron. The product of the blast furnace became known as pig iron from the method of casting, which involved running the liquid into a main channel connected at right angles to a number of shorter channels. The whole arrangement resembled a sow suckling her litter, and so the lengths of solid iron from the shorter channels were known as pigs.

Despite the military demand for cast iron, most civil applications required malleable iron, which until then had been made directly in a bloomery. The arrival of blast furnaces, however, opened up an alternative manufacturing route; this involved converting cast iron to wrought iron by a process known as fining. Pieces of cast iron were placed on a finery hearth, on which charcoal was being burned with a plentiful supply of air, so that carbon in the iron was removed by oxidation, leaving semisolid malleable iron behind. From the 15th century on, this two-stage process gradually replaced direct iron making, which nevertheless survived into the 19th century.

By the middle of the 16th century, blast furnaces were being operated more or less continuously in southeastern England. Increased iron production led to a scarcity of wood for charcoal and to its subsequent replacement by coal in the form of cokea discovery that is usually credited to Abraham Darby in 1709. Because the higher strength of coke enabled it to support a bigger charge, much larger furnaces became possible, and weekly outputs of 5 to 10 tons of pig iron were achieved.

Next, the advent of the steam engine to drive blowing cylinders meant that the blast furnace could be provided with more air. This created the potential problem that pig iron production would far exceed the capacity of the finery process. Accelerating the conversion of pig iron to malleable iron was attempted by a number of inventors, but the most successful was the Englishman Henry Cort, who patented his puddling furnace in 1784. Cort used a coal-fired reverberatory furnace to melt a charge of pig iron to which iron oxide was added to make a slag. Agitating the resultant puddle of metal caused carbon to be removed by oxidation (together with silicon, phosphorus, and manganese). As a result, the melting point of the metal rose so that it became semisolid, although the slag remained quite fluid. The metal was then formed into balls and freed from as much slag as possible before being removed from the furnace and squeezed in a hammer. For a short time, puddling furnaces were able to provide enough iron to meet the demands for machinery, but once again blast-furnace capacity raced ahead as a result of the Scotsman James Beaumont Nielsens invention in 1828 of the hot-blast stove for preheating blast air and the realization that a round furnace performed better than a square one.

The eventual decline in the use of wrought iron was brought about by a series of inventions that allowed furnaces to operate at temperatures high enough to melt iron. It was then possible to produce steel, which is a superior material. First, in 1856, Henry Bessemer patented his converter process for blowing air through molten pig iron, and in 1861 William Siemens took out a patent for his regenerative open-hearth furnace. In 1879 Sidney Gilchrist Thomas and Percy Gilchrist adapted the Bessemer converter for use with phosphoric pig iron; as a result, the basic Bessemer, or Thomas, process was widely adopted on the continent of Europe, where high-phosphorus iron ores were abundant. For about 100 years, the open-hearth and Bessemer-based processes were jointly responsible for most of the steel that was made, before they were replaced by the basic oxygen and electric-arc furnaces.

Apart from the injection of part of the fuel through tuyeres, the blast furnace has employed the same operating principles since the early 19th century. Furnace size has increased markedly, however, and one large modern furnace can supply a steelmaking plant with up to 10,000 tons of liquid iron per day.

Throughout the 20th century, many new iron-making processes were proposed, but it was not until the 1950s that potential substitutes for the blast furnace emerged. Direct reduction, in which iron ores are reduced at temperatures below the metals melting point, had its origin in such experiments as the Wiberg-Soderfors process introduced in Sweden in 1952 and the HyL process introduced in Mexico in 1957. Few of these techniques survived, and those that did were extensively modified. Another alternative iron-making method, smelting reduction, had its forerunners in the electric furnaces used to make liquid iron in Sweden and Norway in the 1920s. The technique grew to include methods based on oxygen steelmaking converters using coal as a source of additional energy, and in the 1980s it became the focus of extensive research and development activity in Europe, Japan, and the United States.

iron ore processing,crushing,grinding plant machine desgin&for sale | prominer (shanghai) mining technology co.,ltd

iron ore processing,crushing,grinding plant machine desgin&for sale | prominer (shanghai) mining technology co.,ltd

After crushing, grinding, magnetic separation, flotation, and gravity separation, etc., iron is gradually selected from the natural iron ore. The beneficiation process should be as efficient and simple as possible, such as the development of energy-saving equipment, and the best possible results with the most suitable process. In the iron ore beneficiation factory, the equipment investment, production cost, power consumption and steel consumption of crushing and grinding operations often account for the largest proportion. Therefore, the calculation and selection of crushing and grinding equipment and the quality of operation management are to a large extent determine the economic benefits of the beneficiation factory.

There are many types of iron ore, but mainly magnetite (Fe3O4) and hematite (Fe2O3) are used for iron production because magnetite and hematite have higher content of iron and easy to be upgraded to high grade for steel factories.

Due to the deformation of the geological properties, there would be some changes of the characteristics of the raw ore and sometimes magnetite, hematite, limonite as well as other types iron ore and veins are in symbiosis form. So mineralogy study on the forms, characteristics as well as liberation size are necessary before getting into the study of beneficiation technology.

1. Magnetite ore stage grinding-magnetic separation process The stage grinding-magnetic separation process mainly utilizes the characteristics of magnetite that can be enriched under coarse grinding conditions, and at the same time, it can discharge the characteristics of single gangue, reducing the amount of grinding in the next stage. In the process of continuous development and improvement, the process adopts high-efficiency magnetic separation equipment to achieve energy saving and consumption reduction. At present, almost all magnetic separation plants in China use a large-diameter (medium 1 050 mm, medium 1 200 mm, medium 1 500 mm, etc.) permanent magnet magnetic separator to carry out the stage tailing removing process after one stage grinding. The characteristic of permanent magnet large-diameter magnetic separator is that it can effectively separate 3~0mm or 6~0mm, or even 10-0mm coarse-grained magnetite ore, and the yield of removed tails is generally 30.00%~50.00%. The grade is below 8.00%, which creates good conditions for the magnetic separation plant to save energy and increase production.

2.Magnetic separation-fine screen process Gangue conjoined bodies such as magnetite and quartz can be enriched when the particle size and magnetic properties reach a certain range. However, it is easy to form a coarse concatenated mixture in the iron concentrate, which reduces the grade of the iron concentrate. This kind of concentrate is sieved by a fine sieve with corresponding sieve holes, and high-quality iron concentrate can be obtained under the sieve.

There are two methods for gravity separation of hematite. One is coarse-grained gravity separation. The geological grade of the ore deposit is relatively high (about 50%), but the ore body is thinner or has more interlayers. The waste rock is mixed in during mining to dilute the ore. For this kind of ore, only crushing and no-grinding can be used so coarse-grained tailings are discarded through re-election to recover the geological grade.

The other one is fine-grain gravity separation, which mostly deals with the hematite with finer grain size and high magnetic content. After crushing, the ore is ground to separate the mineral monomers, and the fine-grained high-grade concentrate is obtained by gravity separation. However, since most of the weak magnetic iron ore concentrates with strong magnetic separation are not high in grade, and the unit processing capacity of the gravity separation process is relatively low, the combined process of strong magnetic separation and gravity separation is often used, that is, the strong magnetic separation process is used to discard a large amount of unqualified tailings, and then use the gravity separation process to further process the strong magnetic concentrate to improve the concentrate grade.

Due to the complexity, large-scale mixed iron ore and hematite ore adopt stage grinding or continuous grinding, coarse subdivision separation, gravity separation-weak magnetic separation-high gradient magnetic separation-anion reverse flotation process. The characteristics of such process are as follows:

(1) Coarse subdivision separation: For the coarse part, use gravity separation to take out most of the coarse-grained iron concentrate after a stage of grinding. The SLon type high gradient medium magnetic machine removes part of the tailings; the fine part uses the SLon type high gradient strong magnetic separator to further remove the tailings and mud to create good operating conditions for reverse flotation. Due to the superior performance of the SLon-type high-gradient magnetic separator, a higher recovery rate in the whole process is ensured, and the reverse flotation guarantees a higher fine-grained concentrate grade.

(2) A reasonable process for narrow-level selection is realized. In the process of mineral separation, the degree of separation of minerals is not only related to the characteristics of the mineral itself, but also to the specific surface area of the mineral particles. This effect is more prominent in the flotation process. Because in the flotation process, the minimum value of the force between the flotation agent and the mineral and the agent and the bubble is related to the specific surface area of the mineral, and the ratio of the agent to the mineral action area. This makes the factors double affecting the floatability of minerals easily causing minerals with a large specific surface area and relatively difficult to float and minerals with a small specific surface area and relatively easy to float have relatively consistent floatability, and sometimes the former has even better floatability. The realization of the narrow-level beneficiation process can prevent the occurrence of the above-mentioned phenomenon that easily leads to the chaos of the flotation process to a large extent, and improve the beneficiation efficiency.

(3) The combined application of high-gradient strong magnetic separation and anion reverse flotation process achieves the best combination of processes. At present, the weak magnetic iron ore beneficiation plants in China all adopt high-gradient strong magnetic separation-anion reverse flotation process in their technological process. This combination is particularly effective in the beneficiation of weak magnetic iron ore. For high-gradient strong magnetic separation, the effect of improving the grade of concentrate is not obvious. However, it is very effective to rely on high-gradient and strong magnetic separation to provide ideal raw materials for reverse flotation. At the same time, anion reverse flotation is affected by its own process characteristics and is particularly effective for the separation of fine-grained and relatively high-grade materials. The advantages of high-gradient strong magnetic separation and anion reverse flotation technology complement each other, and realize the delicate combination of the beneficiation process.

The key technology innovation of the integrated dry grinding and magnetic separation system is to "replace ball mill grinding with HPGR grinding", and the target is to reduce the cost of ball mill grinding and wet magnetic separation.

HPGRs orhigh-pressure grinding rollshave made broad advances into mining industries. The technology is now widely viewed as a primary milling alternative, and there are several large installations commissioned in recent years. After these developments, anHPGRsbased circuit configuration would often be the base case for certain ore types, such as very hard, abrasive ores.

The wear on a rolls surface is a function of the ores abrasivity. Increasing roll speed or pressure increases wear with a given material. Studs allowing the formation of an autogenous wear layer, edge blocks, and cheek plates. Development in these areas continues, with examples including profiling of stud hardness to minimize the bathtub effect (wear of the center of the rolls more rapidly than the outer areas), low-profile edge blocks for installation on worn tires, and improvements in both design and wear materials for cheek plates.

With Strip Surface, HPGRs improve observed downstream comminution efficiency. This is attributable to both increased fines generation, but also due to what appears to be weakening of the ore which many researchers attribute to micro-cracking.

As we tested , the average yield of 3mm-0 and 0.15mm-0 size fraction with Strip Surface was 78.3% and 46.2%, comparatively, the average yield of 3mm-0 and 0.3mm-0 with studs surface was 58.36% and 21.7%.

These intelligently engineered units are ideal for classifying coarser cuts ranging from 50 to 200 mesh. The feed material is dropped into the top of the classifier. It falls into a continuous feed curtain in front of the vanes, passing through low velocity air entering the side of the unit. The air flow direction is changed by the vanes from horizontal to angularly upward, resulting in separation and classification of the particulate. Coarse particles dropps directly to the product and fine particles are efficiently discharged through a valve beneath the unit. The micro fines are conveyed by air to a fabric filter for final recovery.

Air Magnetic Separation Cluster is a special equipment developed for dry magnetic separation of fine size (-3mm) and micro fine size(-0.1mm) magnetite. The air magnetic separation system can be combined according to the characteristic of magnetic minerals to achieve effective recovery of magnetite.

After rough grinding, adopt appropriate separation method, discard part of tailings and sort out part of qualified concentrate, and re-grind and re-separate the middling, is called stage grinding and stage separation process.

According to the characteristics of the raw ore, the use of stage grinding and stage separation technology is an effective measure for energy conservation in iron ore concentrators. At the coarser one-stage grinding fineness, high-efficiency beneficiation equipment is used to advance the tailings, which greatly reduces the processing volume of the second-stage grinding.

If the crystal grain size is relatively coarse, the stage grinding, stage magnetic separation-fine sieve self-circulation process is adopted. Generally, the product on the fine sieve is given to the second stage grinding and re-grinding. The process flow is relatively simple.

If the crystal grain size is too fine, the process of stage grinding, stage magnetic separation and fine sieve regrind is adopted. This process is the third stage of grinding and fine grinding after the products on the first and second stages of fine sieve are concentrated and magnetically separated. Then it is processed by magnetic separation and fine sieve, the process is relatively complicated.

At present, the operation of magnetic separation (including weak magnetic separation and strong magnetic separation) is one of the effective means of throwing tails in advance; anion reverse flotation and cation reverse flotation are one of the effective means to improve the grade of iron ore.

In particular, in the process of beneficiation, both of them basically take the selected feed minerals containing less gangue minerals as the sorting object, and both use the biggest difference in mineral selectivity, which makes the two in the whole process both play a good role in the process.

Based on the iron ore processing experience and necessary processing tests, Prominer can supply complete processing plant combined with various processing technologies, such as gravity separation, magnetic separation, flotation, etc., to improve the grade of TFe of the concentrate and get the best yield. Magnetic separation is commonly used for magnetite. Gravity separation is commonly used for hematite. Flotation is mainly used to process limonite and other kinds of iron ores

Through detailed mineralogy study and lab processing test, a most suitable processing plant parameters will be acquired. Based on those parameters Prominer can design a processing plant for mine owners and supply EPC services till the plant operating.

Prominer has been devoted to mineral processing industry for decades and specializes in mineral upgrading and deep processing. With expertise in the fields of mineral project development, mining, test study, engineering, technological processing.

iron ore processing plants - iron ore wash plants - cde

iron ore processing plants - iron ore wash plants - cde

Our iron ore wet processing plants are proven to successfully deal with silica and alumina contamination in the iron ore, resulting in an increase in the Fe value of the iron ore thereby increasing the efficiency of the steel production process.

Silica requires very high temperatures in the kiln, therefore, increasing energy costs when it is present in the feed to the kilns. Both alumina and silica build up in the kilns as a coating, reducing the efficiency of the kilns over time.

This requires that the kilns be shut down in order to facilitate the removal of this material build up. Our iron ore processing plants target these contaminants and ensure their effective removal from the feed to the kilns. This has the effect of increasing the Fe value of the iron ore allowing for a more efficient steel production process.

Your choice regarding cookies on this siteCDE websites use cookies. Please click "Accept and Close" to accept the use of cookies on our website. By continuing to browse our website you consent to the use of cookies on this website.

Related Equipments