jaw crusher what role

role of jaw crushers to process the cobblestone - hxjq mining machine manufacturer

role of jaw crushers to process the cobblestone - hxjq mining machine manufacturer

For the material of cobblestone, its main component is silicon dioxide. Featured in the great hardness and high value, cobblestone is widely used in the building field. Generally speaking, to process the cobblestone, it needs the crushers. There are many types of crushers on the world market.

Then, how to choose the crushers is worthy of discussion.Since the cobblestone is very hard, you should take the jaw crusher or cone crusher into use. By crushing things with pressed divided layers, jaw crushing machine and cone crushing machine are very effective in processing materials in great hardness.

Compared with the impact crusher and hammer crusher, jaw crushing machine and cone crusher are more durable in the use of easy-wearing parts. Therefore, it is advisable to use the jaw crusher machine and cone crusher to process the cobblestones.Service is the part of product and competitive strength of enterprises. Hxjq Mining Machine Manufacturer always holds the service standard that users' demand is the orientation to implement the service management, users' satisfaction is goal to carry out the brand service.

As for the service spirit of "enthusiasm, servant and faithfulness", it should run through the whole service system. With the effort to make specialty classic, Hxjq will always regard the demands of customers as the persistent pursuit.With the strategic thought of green industry and internationalization, Hxjq is trying its best to integrate the most advanced technologies, high-leveled intellectuals and world-level theories into the development process. The above effort can be the strong support for the internationalized development of Hxjq.

what are the main components of the jaw crusher? - shanghai zenith company

what are the main components of the jaw crusher? - shanghai zenith company

The structure of the jaw crusher can be composed of a fixed body, a rotating body, an adjusting device, a safety device and the like. The main components of the jaw crusher contain flywheel, frame and the tooth plate, also is the most powerful accessories for the crushed material. The following is a detailed introduction: 1. Crushing chamber: The working mechanism of the jaw crusher refers to the fixed jaw and the movable jaw to form the crushing chamber. They are respectively lined with high-manganese steel broken tooth plates, which are respectively fixed on the fixed jaw plate and the movable jaw plate by bolts. In order to improve the crushing effect, the crushing cavity is high and deep, which is beneficial to the crushing effect of the ore. 2. Moving parts: The moving structure is a welded structure, and the inner hole and the groove are precisely processed and tested to ensure safe and reliable operation, and the finite element analysis is used for calculation and verification. 3: frame parts: The frame is subjected to a large impact load during operation, so it should have sufficient strength and rigidity and be calibrated by finite element analysis. It consists of front wall, rear wall, side wall and rail components. 4. bearings: The jaw crusher bearing is a plain bearing cast with babbitt. With the improvement of the technical level of rolling bearing manufacturing, rolling bearings will be used in the jaw crusher in the future. The bearing bush of the main bearing and the connecting rod is overheated and can be cooled by circulating water. 5. the tooth plate: The tooth plate is a part directly in contact with the ore in the jaw crusher. Although the structure is simple, it plays a key role in the productivity, specific energy consumption, product particle size composition and particle size and crushing capacity of the compound pendulum jaw crusher.

the role of the flywheel in the jaw crusher-sbm industrial technology group

the role of the flywheel in the jaw crusher-sbm industrial technology group

The flywheel is a very prominent big guy in the jaw crusher. Many people wonder what the flywheel is doing. There are two flywheels on the jaw crusher. One of the flywheels is used to connect the V-belt and the eccentric shaft. The other one seems to have no effect on the shape. It increases the weight of the equipment in vain. Can't it be removed? The following will be announced for everyone. In fact, the flywheel is a component that is inseparable from all mining equipment. It is also a key component. In various crusher equipment, the flywheel plays an irreplaceable role. Therefore, the flywheel cannot be removed. The flywheel also plays a very important role in the operation of the equipment. From the appearance of the jaw crusher equipment, it is not difficult to see that there are two large iron wheels on both sides of the jaw crusher equipment. These two wheels are what we call the flywheel. The two flywheels are respectively at the two ends of the eccentric shaft. One of the flywheels is used to connect the V-belts and the eccentric shaft to transmit the kinetic energy. The other is the flywheel that is useless in many people's eyes. In fact, this flywheel plays in the operation of the jaw crusher. Crucial role. The main reason is also from the working principle of the jaw crusher. The jaw crusher is an indirect working device, which causes the resistance on the eccentric shaft to change, the motor load is uneven, and the mechanical rate fluctuates. This flywheel is installed to evenly load the motor, reduce the rated power of the motor, and reduce mechanical rate fluctuations. The flywheel stores the energy of the jaw crusher during the empty stroke and releases it when the material is squeezed. That is, when the movable raft leaves the fixed raft, the flywheel accumulates energy, and when it is closed, the flywheel transfers the accumulated energy for the material of the crusher. This makes the load of the motor tend to be uniform, thereby reducing the rated power of the motor. Thanks to the flywheel, the energy consumption of the jaw crusher is even. Not all smashing machines are only one flywheel connecting the V-belt, and there are also two flywheels connected to the V-belt jaw crusher, such as a large motor with two motors. The crusher treats both flywheels as a pulley-connected V-belt. This simplifies the structure of the device and makes the best use of it.

jaw crusher working principle

jaw crusher working principle

A sectional view of the single-toggle type of jaw crusher is shown below.In one respect, the working principle and application of this machine are similar to all types of rock crushers, the movable jaw has its maximum movement at the top of the crushing chamber, and minimum movement at the discharge point. The motion is, however, a more complex one than the Dodge motion, being the resultant of the circular motion of the eccentric shaft at the top of the swing jaw. combined with the rocking action of the inclined toggle plate at the bottom of this jaw. The motion at the receiving opening is elliptical; at the discharge opening, it is a thin crescent, whose chord is inclined upwardly toward the stationary jaw. Thus, at all points in the crushing chamber, the motion has both, vertical and horizontal, components.

It will be noted that the motion is a rocking one. When the swing jaw is rising, it is opening, at the top, during the first half of the stroke, and closing during the second half, whereas the bottom of the jaw is closing during the entire up-stroke. A reversal of this motion occurs during the downstroke of the eccentric.

The horizontal component of motion (throw) at the discharge point of the single-toggle jaw crusher is greater than the throw of the Dodge crusher at that point; in fact, it is about three-fourths that of Blake machines of similar short-side receiving-opening dimensions. The combination of favorable crushing angle, and nonchoking jaw plates, used in this machine, promotes a much freer action through the choke zone than that in the Dodge crusher. Capacities compare very favorably with comparable sizes of the Blake machine with non-choking plates, and permissible discharge settings are finer. A table of ratings is given.

The single-toggle type jaw crusher has been developed extensively. Because of its simplicity, lightweight, moderate cost, and good capacity, it has found quite a wide field of application in portable crushing rigs. It also fits into the small, single-stage mining operation much better than the slower Dodge type. Some years since this type was developed with very wide openings for reduction crushing applications, but it was not able to seriously challenge the gyratory in this field, especially when the high-speed modern versions of the latter type were introduced.

Due to the pronounced vertical components of motion in the single-toggle machine, it is obvious that a wiping action takes place during the closing strokes; either, the swing jaw must slip on the material, or the material must slip along the stationary jaw. It is inevitable that such action should result in accelerated wear of the jaw plates; consequently, the single-toggle crusher is not an economical machine for reducing highly abrasive, or very hard, tough rock. Moreover, the large motion at the receiving opening greatly accentuates shocks incidental to handling the latter class of material, and the full impact of these shocks must be absorbed by the bearings in the top of the swing jaw.

The single-toggle machine, like the Dodge type, is capable of making a high ratio-of-reduction, a faculty which enables it to perform a single-stage reduction of hand-loaded, mine run ore to a suitable ball mill, or rod mill, feed.

Within the limits of its capacity, and size of receiving openings, it is admirably suited for such operations. Small gravel plant operations are also suited to this type of crusher, although it should not be used where the gravel deposit contains extremely hard boulders. The crusher is easy to adjust, and, in common with most machines of the jaw type, is a simple crusher to maintain.

As rock particles are compressed between the inclined faces of the mantle and concaves there is a tendency for them to slip upward. Slippage occurs in all crushers, even in ideal conditions. Only the particles weight and the friction between it and the crusher surfaces counteract this tendency. In particular, very hard rock tends to slip upward rather than break. Choke feeding this kind of material can overload the motor, leaving no option but to regulate the feed. Smaller particles, which weigh less, and harder particles, which are more resistant to breakage, will tend to slip more. Anything that reduces friction, such as spray water or feed moisture, will promote slippage.

Leading is a technique for measuring the gap between fixed and moveable jaws. The procedure is performed while the crusher is running empty. A lead plug is lowered on a lanyard to the choke point, then removed and measured to find out how much thickness remains after the crusher has compressed it. This measures the closed side setting. The open side setting is equal to this measurement plus the throw of the mantle. The minimum safe closed side setting depends on:

Blake (Double Toggle) Originally the standard jaw crusher used for primary and secondary crushing of hard, tough abrasive rocks. Also for sticky feeds. Relatively coarse slabby product, with minimum fines.

Overhead Pivot (Double Toggle) Similar applications to Blake. Overhead pivot; reduces rubbing on crusher faces, reduces choking, allows higher speeds and therefore higher capacities. Energy efficiency higher because jaw and charge not lifted during cycle.

Overhead Eccentric (Single Toggle) Originally restricted to sampler sizes by structural limitations. Now in the same size of Blake which it has tended to supersede, because overhead eccentric encourages feed and discharge, allowing higher speeds and capacity, but with higher wear and more attrition breakage and slightly lower energy efficiency. In addition as compared to an equivalent double toggle, they are cheaper and take up less floor space.

Since the jaw crusher was pioneered by Eli Whitney Blake in the 2nd quarter of the 1800s, many have twisted the Patent and come up with other types of jaw crushers in hopes of crushing rocks and stones more effectively. Those other types of jaw crusher inventors having given birth to 3 groups:

Heavy-duty crushing applications of hard-to-break, high Work Index rocks do prefer double-toggle jaw crushers as they are heavier in fabrication. A double-toggle jaw crusher outweighs the single-toggle by a factor of 2X and well as costs more in capital for the same duty. To perform its trade-off evaluation, the engineering and design firm will analyze technical factors such as:

1. Proper selection of the jaws. 2. Proper feed gradation. 3. Controlled feed rate. 4. Sufficient feeder capacity and width. 5. Adequate crusher discharge area. 6. Discharge conveyor sized to convey maximum crusher capacity.

Although the image below is of a single-toggle, it illustrates the shims used to make minor setting changes are made to the crusher by adding or removing them in the small space between the crushers mainframe and the rea toggle block.

The jaw crusher discharge opening is the distance from the valley between corrugations on one jaw to the top of the mating corrugation on the other jaw. The crusher discharge opening governs the size of finished material produced by the crusher.

Crusher must be adjusted when empty and stopped. Never close crusher discharge opening to less than minimum opening. Closing crusher opening to less than recommended will reduce the capacity of crusher and cause premature failure of shaft and bearing assembly.

To compensate for wear on toggle plate, toggle seat, pitman toggle seat, and jaws additional shims must be inserted to maintain the same crusher opening. The setting adjustment system is designed to compensate for jaw plate wear and to change the CSS (closed side setting) of the jaw crusher. The setting adjustment system is built into the back frame end.

Here also the toggle is kept in place by a compression spring. Large CSS adjustments are made to the jaw crusher by modifying the length of the toggle. Again, shims allow for minor gap adjustments as they are inserted between the mainframe and the toggle block.

is done considering the maximum rock-lump or large stone expected to be crushed and also includes the TPH tonnage rate needing to be crushed. In sizing, we not that jaw crushers will only have around 75% availability and extra sizing should permit this downtime.

As a rule, the maximum stone-lump dimension need not exceed 80% of the jaw crushers gape. For intense, a 59 x 79 machine should not see rocks larger than 80 x 59/100 = 47 or 1.2 meters across. Miners being miners, it is a certainty during day-to-day operation, the crusher will see oversized ore but is should be fine and pass-thru if no bridging takes place.

It will be seen that the pitman (226) is suspended from an eccentric on the flywheel shaft and consequently moves up and down as the latter revolves, forcing the toggle plates outwards at each revolution. The seating (234) of the rear toggle plate (239) is fixed to the crusher frame; the bottom of the swing jaw (214) is therefore pushed forward each time the pitman rises, a tension rod (245) fitted with a spring (247) being used to bring it back as the pitman falls. Thus at each revolution of the flywheel the movable jaw crushes any lump of ore once against the stationary jaw (212) allowing it to fall as it swings back on the return half-stroke until eventually the pieces have been broken small enough to drop out. It follows that the size to which the ore is crushed.

The jaw crusher is not so efficient a machine as the gyratory crusher described in the next paragraph, the chief reason for this being that its crushing action is confined to the forward stroke of the jaw only, whereas the gyratory crusher does useful work during the whole of its revolution. In addition, the jaw crusher cannot be choke-fed, as can the other machine, with the result that it is difficult to keep it working at its full capacity that is, at maximum efficiency.

Tables 5 and 6 give particulars of different sizes of jaw crushers. The capacity figures are based on ore weighing 100 lb. per cubic foot; for a heavier ore, the figures should be increased in direct proportion to its weight in pounds per cubic foot.

The JAW crusher and the GYRATORY crusher have similarities that put them into the same class of crusher. They both have the same crushing speed, 100 to 200 R.P.M. They both break the ore by compression force. And lastly, they both are able to crush the same size of ore.

In spite of their similarities, each crusher design has its own limitations and advantages that differ from the other one. A Gyratory crusher can be fed from two sides and is able to handle ore that tends to slab. Its design allows a higher-speed motor with a higher reduction ratio between the motor and the crushing surface. This means a dollar saving in energy costs.

A Jaw crusher on the other hand requires an Ely wheel to store energy. The box frame construction of this type of crusher also allows it to handle tougher ore. This design restricts the feeding of the crusher to one side only.

The ore enters from the top and the swing jaw squeezes it against the stationary jaw until it breaks. The broken ore then falls through the crusher to be taken away by a conveyor that is under the crusher.Although the jaws do the work, the real heart of this crusher is the TOGGLE PLATES, the PITMAN, and the PLY WHEEL.

These jaw crushers are ideal forsmall properties and they are of the high capacity forced feed design.On this first Forced Feed Jaw Crusher, the mainframe and bumper are cast of special alloy iron and the initial cost is low. The frame is ribbed both vertically and horizontally to give maximum strength with minimum weight. The bumper is ruggedly constructed to withstand tremendous shock loads. Steel bumper can be furnished if desired. The side bearings are bronze; the bumper bearings are of the antifriction type.

This bearing arrangement adds both strength and ease of movement. The jaw plates and cheek plates are reversible and are of the best-grade manganese steel. The jaw opening is controlled by the position of an adjustable wedge block. The crusher is usually driven by a V-to-V belt drive, but it can be arranged for either V-to-flat or fiat belt drive. The 8x10 size utilizes a split frame and maybe packed for muleback transportation. Cast steel frames can be furnished to obtain maximum durability.

This second type of forced feed rock crusher is similar in design to the Type H listed above except for having a frame and bumper made of cast steel. This steel construction makes the unit lighter per unit of size and adds considerable strength. The bearings are all of the special design; they are bronze and will stand continuous service without any danger of failure. The jaw and cheek plates are manganese steel; and are completely reversible, thus adding to their wearing life. The jaw opening is controlled by the position of an adjustable wedge block. The crushers are usually driven by V-to-V but can be arranged for V-to-flat and belt drive. The 5x6 size and the 8x10 size can be made with sectionalized frame for muleback transportation. This crusher is ideal for strenuous conditions. Consider a multi jaw crusher.

Some jaw crushers are on-floor, some aboveground, and others underground. This in many countries, and crushing many kinds of ore. The Traylor Bulldog Jaw crusher has enjoyed world wide esteem as a hard-working, profit-producing, full-proof, and trouble-free breaker since the day of its introduction, nearly twenty years ago. To be modern and get the most out of your crushing dollars, youll need the Building breaker. Wed value the privilege of telling you why by letter, through our bulletins, or in person. Write us now today -for a Blake crusher with curved jaw plates that crush finer and step up production.

When a machine has such a reputation for excellence that buyers have confidence in its ability to justify its purchase, IT MUST BE GOOD! Take the Type G Traylor Jaw Crusher, for instance. The engineers and operators of many great mining companies know from satisfying experience that this machine delivers a full measure of service and yields extra profits. So they specify it in full confidence and the purchase is made without the usual reluctance to lay out good money for a new machine.

The success of the Type G Traylor Jaw Crusheris due to several characteristics. It is (1) STRONG almost to superfluity, being built of steel throughout; it is (2) FOOL-PROOF, being provided with our patented Safety Device which prevents breakage due to tramp iron or other causes of jamming; it is (3) ECONOMICAL to operate and maintain, being fitted with our well-known patented Bulldog Pitman and Toggle System, which saves power and wear by minimizing frictionpower that is employed to deliver increased production; it is (4) CONVENIENT to transport and erect in crowded or not easily accessible locations because it is sectionalized to meet highly restrictive conditions.

Whenever mining men need a crusher that is thoroughly reliable and big producer (which is of all time) they almost invariably think first of a Traylor Type G Jaw Crusher. By experience, they know that this machine has built into it the four essentials to satisfaction and profit- strength, foolproofness, economy, and convenience.

Maximum STRENGTH lies in the liberal design and the steel of which crushers parts are made-cast steel frame, Swing Jaw, Pitman Cap and Toggles, steel Shafts and Pitman rods and manganese steel Jaw Plates and Cheek Plates. FOOLPROOFNESS is provided by our patented and time-tested safety Device which prevents breakage due to packing or tramp iron. ECONOMY is assured by our well-known Bulldog Pitman and Toggle System, which saves power and wear by minimizing friction, the power that is used to deliver greater productivity. CONVENIENCE in transportation and erection in crowded or not easily accessible locations is planned for in advance by sectionalisation to meet any restrictive conditions.

Many of the worlds greatest mining companies have standardized upon the Traylor Type G Jaw Crusher. Most of them have reordered, some of them several times. What this crusher is doing for them in the way of earning extra dollars through increased production and lowered costs, it will do for you! Investigate it closely. The more closely you do, the better youll like it.

jaw crusher vs gyratory crusher - jxscmachine

jaw crusher vs gyratory crusher - jxscmachine

Jaw crusher and gyratory crusher as the primary crusher, play an important role in the crushing process. How to choose the suited primary crusher from the jaw crusher? Whats the difference between a jaw crusher and a gyratory crusher? JXSC starts with the following points: structure, capacity, energy consumption, maintenance.

All in all, if one set jaw crusher can achieve the needs of production, buy jaw crusher; if need two sets of jaw crusher, that would be better to buy a gyratory crusher. You may interest in 1. Single Toggle vs Double Toggle Jaw Crusher 2. Jaw Crusher Operation

what's the role of flywheels in jaw crushers - hongxing machinery

what's the role of flywheels in jaw crushers - hongxing machinery

The flywheel is an obvious big guy in the jaw crusher, and many new users wonder what the flywheel is doing? Each jaw crusher has two flywheels, one of the flywheels is used to connect the triangle belt and eccentric shaft, and the other one seems to be good-for-nothing from the appearance but increasing the weight of jaw crusher equipment in vain, can't we get rid of it? The answer will be announced in the following by Hongxing Machinery.

In fact, the jaw crusher flywheel is an essential and crucial component for all mine equipment and in all kinds of crushing equipment, flywheel plays an irreplaceable role in the process of equipment operation, therefore, the jaw crusher flywheel cannot be removed.

From the appearance of jaw crusher, it is easy to see two large iron wheels on both sides of jaw crusher, we call them flywheels. The two flywheels are at each end of the eccentric shaft, and one of the flywheels is used to connect the triangle belt and the eccentric shaft to transfer the kinetic energy. The other is regarded as useless by many people, however, this flywheel plays a crucial role in the operation of jaw crusher. The main reason should be started with jaw crusher working principle, jaw crusher is a kind of equipment for intermittent work, which leads to the resistance changing on eccentric shaft, the uneven motor load, motor load and the mechanical rate fluctuation forming. This flywheel is designed to make the motor load evenly, reduce the rated power of the motor and decrease the mechanical rate fluctuation.

The flywheels will store the energy of jaw crusher with empty stroke and release it when the moving jaw squeezes the material. In other words, jaw crusher flywheels store energy when the movable jaw leaves from the fixed jaw, at the closing time, the flywheels will transfer out the accumulated energy for the use of jaw crusher crushing materials, then which can make the motor load trend to even, so as to reduce the rated power of motor. Just because of the flywheel, the energy consumption of jaw crusher is distributed evenly.

Moreover, HXJQ expert has one more thing to say, not all of the jaw crushers have only one flywheel connecting the triangle belt, but there are both flywheels connecting the triangle belt. If there is someone large-scale jaw crusher with two motors, that uses the two flywheels as the belt pulley to be connected with the triangle belt, which not only simplifies the jaw crusher structure but also makes the best use of the two flywheels.

crusher - an overview | sciencedirect topics

crusher - an overview | sciencedirect topics

Roll crushers are generally not used as primary crushers for hard ores. Even for softer ores, like chalcocite and chalcopyrite they have been used as secondary crushers. Choke feeding is not advisable as it tends to produce particles of irregular size. Both open and closed circuit crushing are employed. For close circuit the product is screened with a mesh size much less than the set.

Fig. 6.4 is a typical set up where ore crushed in primary and secondary crushers are further reduced in size by a rough roll crusher in open circuit followed by finer size reduction in a closed circuit by roll crusher. Such circuits are chosen as the feed size to standard roll crushers normally do not exceed 50mm.

Cone crushers were originally designed and developed by Symons around 1920 and therefore are often described as Symons cone crushers. As the mechanism of crushing in these crushers are similar to gyratory crushers their designs are similar, but in this case the spindle is supported at the bottom of the gyrating cone instead of being suspended as in larger gyratory crushers. Fig. 5.3 is a schematic diagram of a cone crusher. The breaking head gyrates inside an inverted truncated cone. These crushers are designed so that the head to depth ratio is larger than the standard gyratory crusher and the cone angles are much flatter and the slope of the mantle and the concaves are parallel to each other. The flatter cone angles helps to retain the particles longer between the crushing surfaces and therefore produce much finer particles. To prevent damage to the crushing surfaces, the concave or shell of the crushers are held in place by strong springs or hydraulics which yield to permit uncrushable tramp material to pass through.

The secondary crushers are designated as Standard cone crushers having stepped liners and tertiary Short Head cone crushers, which have smoother crushing faces and steeper cone angles of the breaking head. The approximate distance of the annular space at the discharge end designates the size of the cone crushers. A brief summary of the design characteristics is given in Table 5.4 for crusher operation in open circuit and closed circuit situations.

The Standard cone crushers are for normal use. The Short Head cone crushers are designed for tertiary or quaternary crushing where finer product is required. These crushers are invariably operated in closed circuit. The final product sizes are fine, medium or coarse depending on the closed set spacing, the configuration of the crushing chamber and classifier performance, which is always installed in parallel.

For finer product sizes, i.e. less than 6mm, special cone crushers known as Gyradisc crushers are available. The operation is similar to the standard cone crushers except that the size reduction is caused more by attrition than by impact, [5]. The reduction ratio is around 8:1 and as the product size is relatively small the feed size is limited to less than 50mm with a nip angle between 25 and 30. The Gyradisc crushers have head diameters from around 900-2100mm. These crushers are always operated in choke feed conditions. The feed size is less than 50mm and therefore the product size is usually less than 6-9mm.

Crushing is accomplished by compression of the ore against a rigid surface or by impact against a surface in a rigidly constrained motion path. Crushing is usually a dry process and carried out on ROM ore in succession of two or three stages, namely, by (1) primary, (2) secondary, and (3) tertiary crushers.

Primary crushers are heavy-duty rugged machines used to crush ROM ore of () 1.5m size. These large-sized ores are reduced at the primary crushing stage for an output product dimension of 1020cm. The common primary crushers are of jaw and gyratory types.

The jaw crusher reduces the size of large rocks by dropping them into a V-shaped mouth at the top of the crusher chamber. This is created between one fixed rigid jaw and a pivoting swing jaw set at acute angles to each other. Compression is created by forcing the rock against the stationary plate in the crushing chamber as shown in Fig.13.9. The opening at the bottom of the jaw plates is adjustable to the desired aperture for product size. The rocks remain in between the jaws until they are small enough to be set free through this opening for further size reduction by feeding to the secondary crusher.

The type of jaw crusher depends on input feed and output product size, rock/ore strength, volume of operation, cost, and other related parameters. Heavy-duty primary jaw crushers are installed underground for uniform size reduction before transferring the ore to the main centralized hoisting system. Medium-duty jaw crushers are useful in underground mines with low production (Fig.13.10) and in process plants. Small-sized jaw crushers (refer to Fig.7.32) are installed in laboratories for the preparation of representative samples for chemical analysis.

The gyratory crusher consists of a long, conical, hard steel crushing element suspended from the top. It rotates and sweeps out in a conical path within the round, hard, fixed crushing chamber (Fig.13.11). The maximum crushing action is created by closing the gap between the hard crushing surface attached to the spindle and the concave fixed liners mounted on the main frame of the crusher. The gap opens and closes by an eccentric drive on the bottom of the spindle that causes the central vertical spindle to gyrate.

The secondary crusher is mainly used to reclaim the primary crusher product. The crushed material, which is around 15cm in diameter obtained from the ore storage, is disposed as the final crusher product. The size is usually between 0.5 and 2cm in diameter so that it is suitable for grinding. Secondary crushers are comparatively lighter in weight and smaller in size. They generally operate with dry clean feed devoid of harmful elements like metal splinters, wood, clay, etc. separated during primary crushing. The common secondary crushers are cone, roll, and impact types.

The cone crusher (Fig.13.12) is very similar to the gyratory type, except that it has a much shorter spindle with a larger-diameter crushing surface relative to its vertical dimension. The spindle is not suspended as in the gyratory crusher. The eccentric motion of the inner crushing cone is similar to that of the gyratory crusher.

The roll crusher consists of a pair of horizontal cylindrical manganese steel spring rolls (Fig.13.14), which rotate in opposite directions. The falling feed material is squeezed and crushed between the rollers. The final product passes through the discharge point. This type of crusher is used in secondary or tertiary crushing applications. Advanced roll crushers are designed with one rotating cylinder that rotates toward a fix plate or rollers with differing diameters and speeds. It improves the liberation of minerals in the crushed product. Roll crushers are very often used in limestone, coal, phosphate, chalk, and other friable soft ores.

The impact crusher (Fig.13.15) employs high-speed impact or sharp blows to the free-falling feed rather than compression or abrasion. It utilizes hinged or fixed heavy metal hammers (hammer mill) or bars attached to the edges of horizontal rotating discs. The hammers, bars, and discs are made of manganese steel or cast iron containing chromium carbide. The hammers repeatedly strike the material to be crushed against a rugged solid surface of the crushing chamber breaking the particles to uniform size. The final fine products drop down through the discharge grate, while the oversized particles are swept around for another crushing cycle until they are fine enough to fall through the discharge gate. Impact crushers are widely used in stone quarrying industry for making chips as road and building material. These crushers are normally employed for secondary or tertiary crushing.

If size reduction is not completed after secondary crushing because of extra-hard ore or in special cases where it is important to minimize the production of fines, tertiary recrushing is recommended using secondary crushers in a close circuit. The screen overflow of the secondary crusher is collected in a bin (Fig.13.16) and transferred to the tertiary crusher through a conveyer belt in close circuit.

Primary jaw crushers typically operate in open circuit under dry conditions. Depending on the size reduction required, the primary jaw crushers are followed by secondary and tertiary crushing. The last crusher in the line of operation operates in closed circuit. That is, the crushed product is screened and the oversize returned to the crusher for further size reduction while the undersize is accepted as the product. Flow sheets showing two such set-ups are shown in Figs. 3.1 and 3.2.

Jaw crushers are installed underground in mines as well as on the surface. When used underground, jaw crushers are commonly used in open circuit. This is followed by further size reduction in crushers located on the surface.

When the run of mine product is conveyed directly from the mine to the crusher, the feed to the primary crusher passes under a magnet to remove tramp steel collected during the mining operation. A grizzly screen is placed between the magnet and the receiving hopper of the crusher to scalp (remove) boulders larger than the size of the gape. Some mines deliver product direct to storage bins or stockpiles, which then feed the crushers mechanically by apron feeders, Ross feeders or similar devices to regulate the feed rate to the crusher. Alternately haulage trucks, front-end loaders, bottom discharge railroad cars or tipping wagons are used. In such cases, the feed rate to the crusher is intermittent which is a situation generally avoided. In such cases of intermittent feed, storage areas are installed and the feed rate regulated by bulldozers, front loaders or bin or stockpile hoppers and feeders. It is necessary that the feed to jaw crushers be carefully designed to balance with the throughput rate of the crusher. When the feed rate is regulated to keep the receiving hopper of the crusher full at all times so that the volume rate of rock entering any point in the crusher is greater than the rate of rock leaving, it is referred to as choke feeding. During choke feeding the crushing action takes place between the jaw plates and particles as well as by inter-particle compression. Choke feeding necessarily produces more fines and requires careful feed control. For mineral liberation, choked feeding is desirable.

When installed above ground, the object of the crushing circuit is to crush the ore to achieve the required size for down stream use. In some industries, for example, iron ore or coal, where a specific product size is required (iron ore 30+6mm), careful choice of jaw settings and screen sizes are required to produce the minimum amount of fines (i.e. 6mm) and maximum the amount of lump ore within the specified size range. For hard mineral bearing rocks like gold or nickel ores where liberation of minerals from the host rock is the main objective, further stages of size reduction are required.

A gold ore was crushed in a secondary crusher and screened dry on an 1180micron square aperture screen. The screen was constructed with 0.12mm diameter uniform stainless steel wire. The size analysis of the feed, oversize and undersize streams are given in the following table. The gold content in the feed, undersize and oversize streams were; 5ppm, 1.5ppm and 7ppm respectively. Calculate:

The self tuning control algorithm has been developed and applied on crusher circuits and flotation circuits [22-24] where PID controllers seem to be less effective due to immeasurable change in parameters like the hardness of the ore and wear in crusher linings. STC is applicable to non-linear time varying systems. It however permits the inclusion of feed forward compensation when a disturbance can be measured at different times. The STC control system is therefore attractive. The basis of the system is:

The disadvantage of the set up is that it is not very stable and therefore in the control model a balance has to be selected between stability and performance. A control law is adopted. It includes a cost function CF, and penalty on control action. The control law has been defined as:

A block diagram showing the self tuning set-up is illustrated in Fig. 18.27. The disadvantage of STC controllers is that they are less stable and therefore in its application a balance has to be derived between stability and performance.

Bone recycling is a simple process where useful products can be extracted. Minerals such as calcium powder for animal; feed are extracted from the bone itself. The base material for cosmetics and some detergent manufacturing needs are extracted from the bone marrow.

The bone recycling process passes through seven stages starting from crushing and ending with packing. Figure 13.14 gives a schematic diagram showing the bone recycling process which goes through the following steps:

Following the standard procedures in the Beijing SHRIMP Center, zircons were separated using a jaw crusher, disc mill, panning, and a magnetic separator, followed by handpicking using a binocular microscope. The grains were mounted together with the standard zircon TEM (417Ma, Black etal., 2003) and then polished to expose the internal structure of the zircons. Cathodoluminescence (CL) imaging was conducted using a Hitachi SEM S-3000N equipped with a Gatan Chroma CL detector in the Beijing SHRIMP Center. The zircon analysis was performed using the SHRIMP II also in the Beijing SHRIMP Centre. The analytical procedures and conditions were similar to those described by Williams (1998). Analytical spots with 25m diameter were bombarded by a 3nA, 10kV O2 primary ion beam to sputter secondary ions. Five scans were performed on every analysis, and the mass resolution was 5000 (at 1%). M257 standard zircon (561.3Ma, U=840ppm) was used as the reference value for the U concentration, and TEM standard zircons were used for Pb/U ratio correction (Black etal., 2003). Common Pb was corrected using the measured 204Pb. Data processing was performed using the SQUID/Isoplot programs (Ludwig, 2001a,b). Errors for individual analyses are at 1, but the errors for weighted average ages are at 2.

A stockpile can be used to blend ore from different sources. This is useful for flotation circuits where fluctuations ingrade can change the mass balance and circulating loads around the plant. Blending can also be done on the ROMpad.

The lowest cost alternative is to have no surge at all, but rather to have a crushing plant on line. This is workable for small-scale plant with single-stage jaw crushers as the availability of these simple plant is very high provided control over ROM size is maintained.

The second alternative is to use a small live surge bin after the primary crusher with a secondary reclaim feeder. Crushed ore feeds this bin continuously and the bin overflows to a small conveyor feeding a dead stockpile. In the event of a primary crusher failure, the crusher loader is used to reclaim the stockpile via the surge bin, which doubles as an emergency hopper.

For coarse ore, the next alternative is a coarse ore stockpile. Stockpiles of this type are generally 1525% live and require a tunnel (concrete or Armco) and a number of reclaim feeders to feed the milling circuit.

Multi-stage crushing circuits usually require surge capacity as the availability of each unit process is cumulative. A fine-ore bin is usually required. Smaller bins are usually fabricated from steel as this is cheaper. Live capacity of bins is higher than stockpiles but they also require a reclaim tunnel and feeders.

Related Equipments