limestone ball mill operation

limestone mill - high efficiency, large capacity, 200-2500 mesh

limestone mill - high efficiency, large capacity, 200-2500 mesh

Limestone which is mainly made up of calcium carbonateCaCO3is largely used as building material & industrial raw materials. Limestone can be directly processed into aggregated rock and burnt into unslaked lime which becomes slaked lime after its moisture & water absorption. The main content of slaked lime is Ca(OH)2.Slaked lime can be blended into lime slurry, lime putty, lime mortar etc. Which can be used as coating material, brick & tile adhesive. Limestone is the main raw material of glass production. Calcium carbonate can be directly processed into aggregated rock and burnt into unslaked lime. There are two types of lime: unslaked lime and slaked lime. Unslaked lime is lumpy, its main content is CaO, pure unslaked lime is white, unslaked lime with impurities is light gray or light yellow. Cement is made from mixture of limestone and clay etc. by high temperature calcining.

The qualified powder is blown through the pipes to the dust collector, the collected powder is conveyed to the storage bin from the discharge outlet, then the powder is packed up by automatic packing machine or loaded into powder tank truck.

The output of HC1300 mill is almost 2 tons more than that of 5R mill when they produce powder of the same specification, while the energy consumption of HC1300 mill is lower. The whole system is automatic, workers operate the mill in central control room; simple operation, low labour cost and low running cost, hence the mill is very competitive; in addition, the services such as design, installation instruction, adjusting & testing are all free.

The output of HC1300 mill is almost 2 tons more than that of 5R mill when they produce powder of the same specification, while the energy consumption of HC1300 mill is lower. The whole system is automatic, workers operate the mill in central control room; simple operation, low labour cost and low running cost, hence the mill is very competitive; in addition, the services such as design, installation instruction, adjusting & testing are all free.

Copyright 2004-2018 by Guilin Hongcheng Mining Equipment Manufacture Co. LTD All rights reserved Tel: |FAX: | E-mail: [email protected] | After-Sales-Service:+86-400-677-6963.

ball mills - an overview | sciencedirect topics

ball mills - an overview | sciencedirect topics

A ball mill is a type of grinder used to grind and blend bulk material into QDs/nanosize using different sized balls. The working principle is simple; impact and attrition size reduction take place as the ball drops from near the top of a rotating hollow cylindrical shell. The nanostructure size can be varied by varying the number and size of balls, the material used for the balls, the material used for the surface of the cylinder, the rotation speed, and the choice of material to be milled. Ball mills are commonly used for crushing and grinding the materials into an extremely fine form. The ball mill contains a hollow cylindrical shell that rotates about its axis. This cylinder is filled with balls that are made of stainless steel or rubber to the material contained in it. Ball mills are classified as attritor, horizontal, planetary, high energy, or shaker.

Grinding elements in ball mills travel at different velocities. Therefore, collision force, direction and kinetic energy between two or more elements vary greatly within the ball charge. Frictional wear or rubbing forces act on the particles, as well as collision energy. These forces are derived from the rotational motion of the balls and movement of particles within the mill and contact zones of colliding balls.

By rotation of the mill body, due to friction between mill wall and balls, the latter rise in the direction of rotation till a helix angle does not exceed the angle of repose, whereupon, the balls roll down. Increasing of rotation rate leads to growth of the centrifugal force and the helix angle increases, correspondingly, till the component of weight strength of balls become larger than the centrifugal force. From this moment the balls are beginning to fall down, describing during falling certain parabolic curves (Figure 2.7). With the further increase of rotation rate, the centrifugal force may become so large that balls will turn together with the mill body without falling down. The critical speed n (rpm) when the balls are attached to the wall due to centrifugation:

where Dm is the mill diameter in meters. The optimum rotational speed is usually set at 6580% of the critical speed. These data are approximate and may not be valid for metal particles that tend to agglomerate by welding.

The degree of filling the mill with balls also influences productivity of the mill and milling efficiency. With excessive filling, the rising balls collide with falling ones. Generally, filling the mill by balls must not exceed 3035% of its volume.

The mill productivity also depends on many other factors: physical-chemical properties of feed material, filling of the mill by balls and their sizes, armor surface shape, speed of rotation, milling fineness and timely moving off of ground product.

where b.ap is the apparent density of the balls; l is the degree of filling of the mill by balls; n is revolutions per minute; 1, and 2 are coefficients of efficiency of electric engine and drive, respectively.

A feature of ball mills is their high specific energy consumption; a mill filled with balls, working idle, consumes approximately as much energy as at full-scale capacity, i.e. during grinding of material. Therefore, it is most disadvantageous to use a ball mill at less than full capacity.

Grinding elements in ball mills travel at different velocities. Therefore, collision force, direction, and kinetic energy between two or more elements vary greatly within the ball charge. Frictional wear or rubbing forces act on the particles as well as collision energy. These forces are derived from the rotational motion of the balls and the movement of particles within the mill and contact zones of colliding balls.

By the rotation of the mill body, due to friction between the mill wall and balls, the latter rise in the direction of rotation until a helix angle does not exceed the angle of repose, whereupon the balls roll down. Increasing the rotation rate leads to the growth of the centrifugal force and the helix angle increases, correspondingly, until the component of the weight strength of balls becomes larger than the centrifugal force. From this moment, the balls are beginning to fall down, describing certain parabolic curves during the fall (Fig. 2.10).

With the further increase of rotation rate, the centrifugal force may become so large that balls will turn together with the mill body without falling down. The critical speed n (rpm) when the balls remain attached to the wall with the aid of centrifugal force is:

where Dm is the mill diameter in meters. The optimum rotational speed is usually set at 65%80% of the critical speed. These data are approximate and may not be valid for metal particles that tend to agglomerate by welding.

where db.max is the maximum size of the feed (mm), is the compression strength (MPa), E is the modulus of elasticity (MPa), b is the density of material of balls (kg/m3), and D is the inner diameter of the mill body (m).

The degree of filling the mill with balls also influences the productivity of the mill and milling efficiency. With excessive filling, the rising balls collide with falling ones. Generally, filling the mill by balls must not exceed 30%35% of its volume.

The productivity of ball mills depends on the drum diameter and the relation of drum diameter and length. The optimum ratio between length L and diameter D, L:D, is usually accepted in the range 1.561.64. The mill productivity also depends on many other factors, including the physical-chemical properties of the feed material, the filling of the mill by balls and their sizes, the armor surface shape, the speed of rotation, the milling fineness, and the timely moving off of the ground product.

where D is the drum diameter, L is the drum length, b.ap is the apparent density of the balls, is the degree of filling of the mill by balls, n is the revolutions per minute, and 1, and 2 are coefficients of efficiency of electric engine and drive, respectively.

A feature of ball mills is their high specific energy consumption. A mill filled with balls, working idle, consumes approximately as much energy as at full-scale capacity, that is, during the grinding of material. Therefore, it is most disadvantageous to use a ball mill at less than full capacity.

Milling time in tumbler mills is longer to accomplish the same level of blending achieved in the attrition or vibratory mill, but the overall productivity is substantially greater. Tumbler mills usually are used to pulverize or flake metals, using a grinding aid or lubricant to prevent cold welding agglomeration and to minimize oxidation [23].

Cylindrical Ball Mills differ usually in steel drum design (Fig. 2.11), which is lined inside by armor slabs that have dissimilar sizes and form a rough inside surface. Due to such juts, the impact force of falling balls is strengthened. The initial material is fed into the mill by a screw feeder located in a hollow trunnion; the ground product is discharged through the opposite hollow trunnion.

Cylindrical screen ball mills have a drum with spiral curved plates with longitudinal slits between them. The ground product passes into these slits and then through a cylindrical sieve and is discharged via the unloading funnel of the mill body.

Conical Ball Mills differ in mill body construction, which is composed of two cones and a short cylindrical part located between them (Fig. 2.12). Such a ball mill body is expedient because efficiency is appreciably increased. Peripheral velocity along the conical drum scales down in the direction from the cylindrical part to the discharge outlet; the helix angle of balls is decreased and, consequently, so is their kinetic energy. The size of the disintegrated particles also decreases as the discharge outlet is approached and the energy used decreases. In a conical mill, most big balls take up a position in the deeper, cylindrical part of the body; thus, the size of the balls scales down in the direction of the discharge outlet.

For emptying, the conical mill is installed with a slope from bearing to one. In wet grinding, emptying is realized by the decantation principle, that is, by means of unloading through one of two trunnions.

With dry grinding, these mills often work in a closed cycle. A scheme of the conical ball mill supplied with an air separator is shown in Fig. 2.13. Air is fed to the mill by means of a fan. Carried off by air currents, the product arrives at the air separator, from which the coarse particles are returned by gravity via a tube into the mill. The finished product is trapped in a cyclone while the air is returned in the fan.

The ball mill is a tumbling mill that uses steel balls as the grinding media. The length of the cylindrical shell is usually 11.5 times the shell diameter (Figure 8.11). The feed can be dry, with less than 3% moisture to minimize ball coating, or slurry containing 2040% water by weight. Ball mills are employed in either primary or secondary grinding applications. In primary applications, they receive their feed from crushers, and in secondary applications, they receive their feed from rod mills, AG mills, or SAG mills.

Ball mills are filled up to 40% with steel balls (with 3080mm diameter), which effectively grind the ore. The material that is to be ground fills the voids between the balls. The tumbling balls capture the particles in ball/ball or ball/liner events and load them to the point of fracture.

When hard pebbles rather than steel balls are used for the grinding media, the mills are known as pebble mills. As mentioned earlier, pebble mills are widely used in the North American taconite iron ore operations. Since the weight of pebbles per unit volume is 3555% of that of steel balls, and as the power input is directly proportional to the volume weight of the grinding medium, the power input and capacity of pebble mills are correspondingly lower. Thus, in a given grinding circuit, for a certain feed rate, a pebble mill would be much larger than a ball mill, with correspondingly a higher capital cost. However, the increase in capital cost is justified economically by a reduction in operating cost attributed to the elimination of steel grinding media.

In general, ball mills can be operated either wet or dry and are capable of producing products in the order of 100m. This represents reduction ratios of as great as 100. Very large tonnages can be ground with these ball mills because they are very effective material handling devices. Ball mills are rated by power rather than capacity. Today, the largest ball mill in operation is 8.53m diameter and 13.41m long with a corresponding motor power of 22MW (Toromocho, private communications).

Modern ball mills consist of two chambers separated by a diaphragm. In the first chamber the steel-alloy balls (also described as charge balls or media) are about 90mm diameter. The mill liners are designed to lift the media as the mill rotates, so the comminution process in the first chamber is dominated by crushing. In the second chamber the ball diameters are of smaller diameter, between 60 and 15mm. In this chamber the lining is typically a classifying lining which sorts the media so that ball size reduces towards the discharge end of the mill. Here, comminution takes place in the rolling point-contact zone between each charge ball. An example of a two chamber ball mill is illustrated in Fig. 2.22.15

Much of the energy consumed by a ball mill generates heat. Water is injected into the second chamber of the mill to provide evaporative cooling. Air flow through the mill is one medium for cement transport but also removes water vapour and makes some contribution to cooling.

Grinding is an energy intensive process and grinding more finely than necessary wastes energy. Cement consists of clinker, gypsum and other components mostly more easily ground than clinker. To minimise over-grinding modern ball mills are fitted with dynamic separators (otherwise described as classifiers or more simply as separators). The working principle is that cement is removed from the mill before over-grinding has taken place. The cement is then separated into a fine fraction, which meets finished product requirements, and a coarse fraction which is returned to mill inlet. Recirculation factor, that is, the ratio of mill throughput to fresh feed is up to three. Beyond this, efficiency gains are minimal.

For more than 50years vertical mills have been the mill of choice for grinding raw materials into raw meal. More recently they have become widely used for cement production. They have lower specific energy consumption than ball mills and the separator, as in raw mills, is integral with the mill body.

In the Loesche mill, Fig. 2.23,16 two pairs of rollers are used. In each pair the first, smaller diameter, roller stabilises the bed prior to grinding which takes place under the larger roller. Manufacturers use different technologies for bed stabilisation.

Comminution in ball mills and vertical mills differs fundamentally. In a ball mill, size reduction takes place by impact and attrition. In a vertical mill the bed of material is subject to such a high pressure that individual particles within the bed are fractured, even though the particles are very much smaller than the bed thickness.

Early issues with vertical mills, such as narrower PSD and modified cement hydration characteristics compared with ball mills, have been resolved. One modification has been to install a hot gas generator so the gas temperature is high enough to partially dehydrate the gypsum.

For many decades the two-compartment ball mill in closed circuit with a high-efficiency separator has been the mill of choice. In the last decade vertical mills have taken an increasing share of the cement milling market, not least because the specific power consumption of vertical mills is about 30% less than that of ball mills and for finely ground cement less still. The vertical mill has a proven track record in grinding blastfurnace slag, where it has the additional advantage of being a much more effective drier of wet feedstock than a ball mill.

The vertical mill is more complex but its installation is more compact. The relative installed capital costs tend to be site specific. Historically the installed cost has tended to be slightly higher for the vertical mill.

Special graph paper is used with lglg(1/R(x)) on the abscissa and lg(x) on the ordinate axes. The higher the value of n, the narrower the particle size distribution. The position parameter is the particle size with the highest mass density distribution, the peak of the mass density distribution curve.

Vertical mills tend to produce cement with a higher value of n. Values of n normally lie between 0.8 and 1.2, dependent particularly on cement fineness. The position parameter is, of course, lower for more finely ground cements.

Separator efficiency is defined as specific power consumption reduction of the mill open-to-closed-circuit with the actual separator, compared with specific power consumption reduction of the mill open-to-closed-circuit with an ideal separator.

As shown in Fig. 2.24, circulating factor is defined as mill mass flow, that is, fresh feed plus separator returns. The maximum power reduction arising from use of an ideal separator increases non-linearly with circulation factor and is dependent on Rf, normally based on residues in the interval 3245m. The value of the comminution index, W, is also a function of Rf. The finer the cement, the lower Rf and the greater the maximum power reduction. At C = 2 most of maximum power reduction is achieved, but beyond C = 3 there is very little further reduction.

Separator particle separation performance is assessed using the Tromp curve, a graph of percentage separator feed to rejects against particle size range. An example is shown in Fig. 2.25. Data required is the PSD of separator feed material and of rejects and finished product streams. The bypass and slope provide a measure of separator performance.

The particle size is plotted on a logarithmic scale on the ordinate axis. The percentage is plotted on the abscissa either on a linear (as shown here) or on a Gaussian scale. The advantage of using the Gaussian scale is that the two parts of the graph can be approximated by two straight lines.

The measurement of PSD of a sample of cement is carried out using laser-based methodologies. It requires a skilled operator to achieve consistent results. Agglomeration will vary dependent on whether grinding aid is used. Different laser analysis methods may not give the same results, so for comparative purposes the same method must be used.

The ball mill is a cylindrical drum (or cylindrical conical) turning around its horizontal axis. It is partially filled with grinding bodies: cast iron or steel balls, or even flint (silica) or porcelain bearings. Spaces between balls or bearings are occupied by the load to be milled.

Following drum rotation, balls or bearings rise by rolling along the cylindrical wall and descending again in a cascade or cataract from a certain height. The output is then milled between two grinding bodies.

Ball mills could operate dry or even process a water suspension (almost always for ores). Dry, it is fed through a chute or a screw through the units opening. In a wet path, a system of scoops that turn with the mill is used and it plunges into a stationary tank.

Mechanochemical synthesis involves high-energy milling techniques and is generally carried out under controlled atmospheres. Nanocomposite powders of oxide, nonoxide, and mixed oxide/nonoxide materials can be prepared using this method. The major drawbacks of this synthesis method are: (1) discrete nanoparticles in the finest size range cannot be prepared; and (2) contamination of the product by the milling media.

More or less any ceramic composite powder can be synthesized by mechanical mixing of the constituent phases. The main factors that determine the properties of the resultant nanocomposite products are the type of raw materials, purity, the particle size, size distribution, and degree of agglomeration. Maintaining purity of the powders is essential for avoiding the formation of a secondary phase during sintering. Wet ball or attrition milling techniques can be used for the synthesis of homogeneous powder mixture. Al2O3/SiC composites are widely prepared by this conventional powder mixing route by using ball milling [70]. However, the disadvantage in the milling step is that it may induce certain pollution derived from the milling media.

In this mechanical method of production of nanomaterials, which works on the principle of impact, the size reduction is achieved through the impact caused when the balls drop from the top of the chamber containing the source material.

A ball mill consists of a hollow cylindrical chamber (Fig. 6.2) which rotates about a horizontal axis, and the chamber is partially filled with small balls made of steel, tungsten carbide, zirconia, agate, alumina, or silicon nitride having diameter generally 10mm. The inner surface area of the chamber is lined with an abrasion-resistant material like manganese, steel, or rubber. The magnet, placed outside the chamber, provides the pulling force to the grinding material, and by changing the magnetic force, the milling energy can be varied as desired. The ball milling process is carried out for approximately 100150h to obtain uniform-sized fine powder. In high-energy ball milling, vacuum or a specific gaseous atmosphere is maintained inside the chamber. High-energy mills are classified into attrition ball mills, planetary ball mills, vibrating ball mills, and low-energy tumbling mills. In high-energy ball milling, formation of ceramic nano-reinforcement by in situ reaction is possible.

It is an inexpensive and easy process which enables industrial scale productivity. As grinding is done in a closed chamber, dust, or contamination from the surroundings is avoided. This technique can be used to prepare dry as well as wet nanopowders. Composition of the grinding material can be varied as desired. Even though this method has several advantages, there are some disadvantages. The major disadvantage is that the shape of the produced nanoparticles is not regular. Moreover, energy consumption is relatively high, which reduces the production efficiency. This technique is suitable for the fabrication of several nanocomposites, which include Co- and Cu-based nanomaterials, Ni-NiO nanocomposites, and nanocomposites of Ti,C [71].

Planetary ball mill was used to synthesize iron nanoparticles. The synthesized nanoparticles were subjected to the characterization studies by X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques using a SIEMENS-D5000 diffractometer and Hitachi S-4800. For the synthesis of iron nanoparticles, commercial iron powder having particles size of 10m was used. The iron powder was subjected to planetary ball milling for various period of time. The optimum time period for the synthesis of nanoparticles was observed to be 10h because after that time period, chances of contamination inclined and the particles size became almost constant so the powder was ball milled for 10h to synthesize nanoparticles [11]. Fig. 12 shows the SEM image of the iron nanoparticles.

The vibratory ball mill is another kind of high-energy ball mill that is used mainly for preparing amorphous alloys. The vials capacities in the vibratory mills are smaller (about 10 ml in volume) compared to the previous types of mills. In this mill, the charge of the powder and milling tools are agitated in three perpendicular directions (Fig. 1.6) at very high speed, as high as 1200 rpm.

Another type of the vibratory ball mill, which is used at the van der Waals-Zeeman Laboratory, consists of a stainless steel vial with a hardened steel bottom, and a single hardened steel ball of 6 cm in diameter (Fig. 1.7).

The mill is evacuated during milling to a pressure of 106 Torr, in order to avoid reactions with a gas atmosphere.[44] Subsequently, this mill is suitable for mechanical alloying of some special systems that are highly reactive with the surrounding atmosphere, such as rare earth elements.

In spite of the traditional approaches used for gas-solid reaction at relatively high temperature, Calka etal.[58] and El-Eskandarany etal.[59] proposed a solid-state approach, the so-called reactive ball milling (RBM), used for preparations different families of meal nitrides and hydrides at ambient temperature. This mechanically induced gas-solid reaction can be successfully achieved, using either high- or low-energy ball-milling methods, as shown in Fig.9.5. However, high-energy ball mill is an efficient process for synthesizing nanocrystalline MgH2 powders using RBM technique, it may be difficult to scale up for matching the mass production required by industrial sector. Therefore, from a practical point of view, high-capacity low-energy milling, which can be easily scaled-up to produce large amount of MgH2 fine powders, may be more suitable for industrial mass production.

In both approaches but with different scale of time and milling efficiency, the starting Mg metal powders milled under hydrogen gas atmosphere are practicing to dramatic lattice imperfections such as twinning and dislocations. These defects are caused by plastics deformation coupled with shear and impact forces generated by the ball-milling media.[60] The powders are, therefore, disintegrated into smaller particles with large surface area, where very clean or fresh oxygen-free active surfaces of the powders are created. Moreover, these defects, which are intensively located at the grain boundaries, lead to separate micro-scaled Mg grains into finer grains capable to getter hydrogen by the first atomically clean surfaces to form MgH2 nanopowders.

Fig.9.5 illustrates common lab scale procedure for preparing MgH2 powders, starting from pure Mg powders, using RBM via (1) high-energy and (2) low-energy ball milling. The starting material can be Mg-rods, in which they are processed via sever plastic deformation,[61] using for example cold-rolling approach,[62] as illustrated in Fig.9.5. The heavily deformed Mg-rods obtained after certain cold rolling passes can be snipped into small chips and then ball-milled under hydrogen gas to produce MgH2 powders.[8]

Planetary ball mills are the most popular mills used in scientific research for synthesizing MgH2 nanopowders. In this type of mill, the ball-milling media have considerably high energy, because milling stock and balls come off the inner wall of the vial and the effective centrifugal force reaches up to 20 times gravitational acceleration. The centrifugal forces caused by the rotation of the supporting disc and autonomous turning of the vial act on the milling charge (balls and powders). Since the turning directions of the supporting disc and the vial are opposite, the centrifugal forces alternately are synchronized and opposite. Therefore, the milling media and the charged powders alternatively roll on the inner wall of the vial, and are lifted and thrown off across the bowl at high speed.

In the typical experimental procedure, a certain amount of the Mg (usually in the range between 3 and 10g based on the vials volume) is balanced inside an inert gas atmosphere (argon or helium) in a glove box and sealed together with certain number of balls (e.g., 2050 hardened steel balls) into a hardened steel vial (Fig.9.5A and B), using, for example, a gas-temperature-monitoring system (GST). With the GST system, it becomes possible to monitor the progress of the gas-solid reaction taking place during the RBM process, as shown in Fig.9.5C and D. The temperature and pressure changes in the system during milling can be also used to realize the completion of the reaction and the expected end product during the different stages of milling (Fig.9.5D). The ball-to-powder weight ratio is usually selected to be in the range between 10:1 and 50:1. The vial is then evacuated to the level of 103bar before introducing H2 gas to fill the vial with a pressure of 550bar (Fig.9.5B). The milling process is started by mounting the vial on a high-energy ball mill operated at ambient temperature (Fig.9.5C).

Tumbling mill is cylindrical shell (Fig.9.6AC) that rotates about a horizontal axis (Fig.9.6D). Hydrogen gas is pressurized into the vial (Fig.9.6C) together with Mg powders and ball-milling media, using ball-to-powder weight ratio in the range between 30:1 and 100:1. Mg powder particles meet the abrasive and impacting force (Fig.9.6E), which reduce the particle size and create fresh-powder surfaces (Fig.9.6F) ready to react with hydrogen milling atmosphere.

Figure 9.6. Photographs taken from KISR-EBRC/NAM Lab, Kuwait, show (A) the vial and milling media (balls) and (B) the setup performed to charge the vial with 50bar of hydrogen gas. The photograph in (C) presents the complete setup of GST (supplied by Evico-magnetic, Germany) system prior to start the RBM experiment for preparing of MgH2 powders, using Planetary Ball Mill P400 (provided by Retsch, Germany). GST system allows us to monitor the progress of RBM process, as indexed by temperature and pressure versus milling time (D).

The useful kinetic energy in tumbling mill can be applied to the Mg powder particles (Fig.9.7E) by the following means: (1) collision between the balls and the powders; (2) pressure loading of powders pinned between milling media or between the milling media and the liner; (3) impact of the falling milling media; (4) shear and abrasion caused by dragging of particles between moving milling media; and (5) shock-wave transmitted through crop load by falling milling media. One advantage of this type of mill is that large amount of the powders (100500g or more based on the mill capacity) can be fabricated for each milling run. Thus, it is suitable for pilot and/or industrial scale of MgH2 production. In addition, low-energy ball mill produces homogeneous and uniform powders when compared with the high-energy ball mill. Furthermore, such tumbling mills are cheaper than high-energy mills and operated simply with low-maintenance requirements. However, this kind of low-energy mill requires long-term milling time (more than 300h) to complete the gas-solid reaction and to obtain nanocrystalline MgH2 powders.

Figure 9.7. Photos taken from KISR-EBRC/NAM Lab, Kuwait, display setup of a lab-scale roller mill (1000m in volume) showing (A) the milling tools including the balls (milling media and vial), (B) charging Mg powders in the vial inside inert gas atmosphere glove box, (C) evacuation setup and pressurizing hydrogen gas in the vial, and (D) ball milling processed, using a roller mill. Schematic presentations show the ball positions and movement inside the vial of a tumbler mall mill at a dynamic mode is shown in (E), where a typical ball-powder-ball collusion for a low energy tumbling ball mill is presented in (F).

analysis of ball mill grinding operation using mill power specific kinetic parameters - sciencedirect

analysis of ball mill grinding operation using mill power specific kinetic parameters - sciencedirect

Effect of operating variables on the energy efficiency of ball mill analyzed.Rates of particle breakage and production of fines per unit power input considered.Both the parameters exhibit significant variation with operating conditions.Effect of variables found to be different under different operating conditions.Rate of production of fines parameter better suited for mill design and scale-up.

With a view to developing a sound basis for the design and scale-up of ball mills, a large amount of data available in the literature were analyzed for variation of the two key mill performance parameters: power specific values of the absolute breakage rate of the coarsest size fraction, S*, and absolute rate of production of fines, F*, with some of the important operating and design variables such as the mill speed, ball load, particle load, ball diameter and mill diameter. In general, values of both the mill performance parameters were found to vary significantly with the mill operating conditions. The nature and relative magnitude of variation for the two parameters also differed significantly. Moreover, the effect of any particular variable on the S* and F* values was found to be significantly different for different sets of operating conditions. It has been emphasized that, as the purpose of grinding is to produce fine particles, the mill design and scale-up work should be based mainly on the F* parameters. Moreover, it is not correct to regard the S* values to be independent of the mill design and operating variables as a general rule, especially for a fine analysis of the performance of the grinding systems.

mining feldspar quartz limestone 12tph ball mill grinder

mining feldspar quartz limestone 12tph ball mill grinder

High Energy Saving Mining Equipment Feldspar Quartz Limestone Ball Mill Price For Sale Application of Feldspar Quartz Limestone Ball Mill: Feldspar Quartz Limestone Ball Mill is widely used in cement, silicate products, new building materials, refractory materials, fertilizers, black and non-ferrous metal beneficiation, and glass ceramics and other production industries, for dry or wet grinding of various ores and other grindable materials. The Quartz Limestone Ball Mill is suitable for grinding various ores and other materials. It is widely used in mineral processing, building materials and chemical industries. It can be divided into dry and wet grinding methods. According to different ways of discharging, it can be divided into two types: grid type and overflow type. Introduction of Feldspar Quartz Limestone Ball Mill: Ball mills are divided into many types due to different specifications, unloading and transmission methods, but their main structures are roughly the same. The ball mill is mainly composed of a cylindrical barrel, a liner, a compartment plate (only available for multi-chamber mills), main bearings, feeding and discharging devices, and transmission devices. As shown in the figure below, its working principle is as follows: Cylindrical cylinder body 1, end cover 2, bearing 3, transmission gear ring 4 and other components. The cylinder 1 is filled with steel balls or steel rods with a diameter of 25-150mm, which are called grinding media. The filling amount is 25%-50% of the effective volume of the entire cylinder. There are end covers 2 at both ends of the cylinder. The end covers are connected with the flanges of the end of the cylinder by bolts. There is a hole in the middle of the end cover, which is called a hollow shaft. The hollow shaft is supported on the bearing 3 and the cylinder can rotate. A large gear ring 4 is also fixed on the cylinder. In the drive system, the motor drives the large gear ring and the cylinder through the coupling, reducer and pinion to rotate slowly. When the barrel rotates, the grinding medium rises to a certain height with the barrel wall, and then falls or drops down in a parabola. Due to the hollow shaft on the end cover, the material is fed into the cylinder from the hollow shaft on the left, and gradually spreads to the right. When the material moves from left to right, the rotating cylinder will bring the steel ball to a certain height. Falling crushed the material, and a part of the steel ball in the barrel has a falling state to grind the material, and the entire movement process is also the crushing process of the material. Specifications of Feldspar Quartz Limestone Ball Mill: Model Roller Number Roller Size (mm) Maximum Feed Size (mm) Fineness of Final Product (mm) Output (t/h) Main Frame Power kW Blower Power kW Overall Dimension (mm) 5R4119 5 410190 20-25 0.613-0.044 5-12 75 75 785080009700 4R3216 4 320160 20-25 0.28-0.047 1.0-8.0 37 30 9900580010580 3R2715 4 270150 15-20 0.28-0.047 0.7-3 22 18.5 870050007819 3R2615 3 260150 15-20 0.28-0.047 0.5-2.7 18.5 15 565033055950 3R2115 3 210150 15-20 0.28-0.047 0.4-1.6 15 11 450028005800 3R1410 3 140100 5-10 0.28-0.047 0.1-1.0 7.5 5 320021004500 Maintenance of Feldspar Quartz Limestone Ball Mill: 1. The lubricating oil must be replaced once the Feldspar Quartz Limestone Ball Mill is used for the first time and running continuously for one month. All the lubricating oil must be removed during the replacement and new lubricating oil must be replaced. In the subsequent use of the Feldspar Quartz Limestone Ball Mill, the lubricating oil must be replaced every six months. 2. When the Feldspar Quartz Limestone Ball Mill is in use, it is necessary to regularly monitor the lubrication conditions of each lubrication point, including the lubrication status and oil level. 3. When the Feldspar Quartz Limestone Ball Mill is in operation, the temperature of the lubricating oil of the main bearing, the transmission shaft and the reducer should be kept below 55, and the maximum temperature should not exceed 60, otherwise the operation of the Feldspar Quartz Limestone Ball Mill should be stopped and carefully checked.

Application of Feldspar Quartz Limestone Ball Mill: Feldspar Quartz Limestone Ball Mill is widely used in cement, silicate products, new building materials, refractory materials, fertilizers, black and non-ferrous metal beneficiation, and glass ceramics and other production industries, for dry or wet grinding of various ores and other grindable materials. The Quartz Limestone Ball Mill is suitable for grinding various ores and other materials. It is widely used in mineral processing, building materials and chemical industries. It can be divided into dry and wet grinding methods. According to different ways of discharging, it can be divided into two types: grid type and overflow type.

Introduction of Feldspar Quartz Limestone Ball Mill: Ball mills are divided into many types due to different specifications, unloading and transmission methods, but their main structures are roughly the same. The ball mill is mainly composed of a cylindrical barrel, a liner, a compartment plate (only available for multi-chamber mills), main bearings, feeding and discharging devices, and transmission devices.

As shown in the figure below, its working principle is as follows: Cylindrical cylinder body 1, end cover 2, bearing 3, transmission gear ring 4 and other components. The cylinder 1 is filled with steel balls or steel rods with a diameter of 25-150mm, which are called grinding media. The filling amount is 25%-50% of the effective volume of the entire cylinder. There are end covers 2 at both ends of the cylinder. The end covers are connected with the flanges of the end of the cylinder by bolts. There is a hole in the middle of the end cover, which is called a hollow shaft. The hollow shaft is supported on the bearing 3 and the cylinder can rotate. A large gear ring 4 is also fixed on the cylinder. In the drive system, the motor drives the large gear ring and the cylinder through the coupling, reducer and pinion to rotate slowly. When the barrel rotates, the grinding medium rises to a certain height with the barrel wall, and then falls or drops down in a parabola. Due to the hollow shaft on the end cover, the material is fed into the cylinder from the hollow shaft on the left, and gradually spreads to the right. When the material moves from left to right, the rotating cylinder will bring the steel ball to a certain height. Falling crushed the material, and a part of the steel ball in the barrel has a falling state to grind the material, and the entire movement process is also the crushing process of the material.

Maintenance of Feldspar Quartz Limestone Ball Mill: 1. The lubricating oil must be replaced once the Feldspar Quartz Limestone Ball Mill is used for the first time and running continuously for one month. All the lubricating oil must be removed during the replacement and new lubricating oil must be replaced. In the subsequent use of the Feldspar Quartz Limestone Ball Mill, the lubricating oil must be replaced every six months. 2. When the Feldspar Quartz Limestone Ball Mill is in use, it is necessary to regularly monitor the lubrication conditions of each lubrication point, including the lubrication status and oil level. 3. When the Feldspar Quartz Limestone Ball Mill is in operation, the temperature of the lubricating oil of the main bearing, the transmission shaft and the reducer should be kept below 55, and the maximum temperature should not exceed 60, otherwise the operation of the Feldspar Quartz Limestone Ball Mill should be stopped and carefully checked.

China Good Quality Active Lime Production Line Supplier . 2020 zk-kiln.com . All Rights Reserved.

Related Equipments