magnetic separation definition

magnetic separation - an overview | sciencedirect topics

magnetic separation - an overview | sciencedirect topics

Magnetic separation takes advantage of the fact that magnetite is strongly magnetic (ferromagnetic), hematite is weakly magnetic (paramagnetic), and most gangue minerals are not magnetic (diamagnetic).

The current research and development initiatives and needs in magnetic separation, shown in Fig. 7, reveal several important trends. Magnetic separation techniques that have been, to a greater extent, conceived empirically and applied in practice, such as superconducting separation, small-particle eddy-current separation, and biomedical separation, are being studied from a more fundamental point of view and further progress can be expected in the near future.

In addition, methods such as OGMS, ferrohydrostatic separation, magnetic tagging, and magnetic flocculation of weakly magnetic materials, that have received a great deal of attention on academic level, are likely to enter the development and technology transfer stages.

The application of high-Tc superconductivity to magnetic separation, and novel magnetism-based techniques, are also being explored, either theoretically or empirically. It can be expected that these methods, such as magnetic flotation, magnetic gravity separation, magnetic comminution, and classification will take advantage of having a much wider control over these processes as a result of the presence of this additional external force.

Magnetic separation takes advantage of the fact that magnetite is strongly magnetic (ferromagnetic), hematite is weakly magnetic (paramagnetic), and most gangue minerals are not magnetic (diamagnetic). A simple magnetic separation circuit can be seen in Figure 1.2.5 [9]. A slurry passes by a magnetized drum; the magnetic material sticks to the drum, while the nonmagnetic slurry keeps flowing. A second pass by a more strongly magnetized drum could be used to separate the paramagnetic particles from the gangue.

Magnetic separation can significantly shorten the purification process by quick retrieval of affinity beads at each step (e.g., binding, wash, and elution), and reduce sample dilution usually associated with traditional column-based elution. The method can be used on viscous materials that will otherwise clog traditional columns and can therefore simplify the purification process by eliminating sample pretreatment, such as centrifugation or filtration to remove insoluble materials and particulates. The capability of miniaturization and parallel screening of multiple conditions, such as growth conditions for optimal protein expression and buffer conditions for purification, makes magnetic separation amenable to high-throughput analysis which can significantly shorten the purification process (Saiyed et al., 2003).

Paramagnetic particles are available as unmodified, modified with common affinity ligands (e.g., streptavidin, GSH, Protein A, etc.), and conjugated particles with specific recognition groups such as monoclonal and polyclonal antibodies (Koneracka et al., 2006). In addition to target protein purification, they can also be used to immobilize a target protein which then acts as a bait to pull down its interaction partner(s) from a complex biological mixture. See Chapter 16.

Magnetic separation of cells is a simple, rapid, specific and relatively inexpensive procedure, which enables the target cells to be isolated directly from crude samples containing a large amount of nontarget cells or cell fragments. Many ready-to-use products are available and the basic equipment for standard work is relatively inexpensive. The separation process can be relatively easily scaled up and thus large amount of cells can be isolated. New processes for detachment of larger magnetic particles from isolated cells enable use of free cells for in vivo applications. Modern instrumentation is available on the market, enabling all the process to run automatically. Such devices represent a flexible platform for future applications in cell separation.

IMS play a dominant role at present but other specific affinity ligands such as lectins, carbohydrates or antigens will probably be used more often in the near future. There are also many possibilities to combine the process of cell magnetic separation with other techniques, such as PCR, enabling the elimination of compounds possibly inhibiting DNA polymerase. New applications can be expected, especially in microbiology (isolation and detection of microbial pathogens) and parasitology (isolation and detection of protozoan parasites). No doubt many new processes and applications in other fields of biosciences and biotechnologies will be developed in the near future.

Magnetic separation methods are widely used for isolation of a variety of cell types. Magnetic particles with immobilized antibodies to various antigens have been employed for the rapid isolation of populations T-(CD4 +, CD3 +, CD8+) and B- (CD19+) of lymphocytes, NK cells, and monocytes. Similarly, immobilization of glycoconjugates on magnetic beads allows the isolation of cell populations expressing a particular carbohydrate-recognizing molecule [19, 20]. Glycosylated magnetic beads can be prepared by loading biotinylated probes onto streptavidin-coated magnetic beads. The glycoparticles are then incubated with a cell suspension and the subpopulation of interest is fished out by means of a magnetic device [20].

When these materials are used in the biological field, special restrictions should be considered and all possible reactions with the biological materials should be predicted. Magnetic properties should be maintained for a specific time during the test. Some applications can be classified as follows:

Magnetic separation is used for clinical application, such as in the separation of proteins, toxemic materials, DNA, and bacteria and viruses. This is also used for real time detecting of viruses. The most important stage in this field is the labeling of molecules with magnetic materials by a reliable connection. Magnetic beads from iron oxide are typically used for biological separation. The main properties of iron oxide are super paramagnetic properties (Meza, 1997).

Effective drug delivery can greatly improve the process of treatment and reduce side effects. In this method, while the amount of drug decreases, the concentration of the drug in the target area increases. Protecting the drug before its gets to the target area is one of the most important factors, because after releasing the drug in the blood stream, white cells detect the drug and swallow them in a short time. An ideal nanoparticle for drug delivery should have the potential to combine with a relatively high-weight drug and disperse uniformly in the blood stream (Shultz et al., 2007).

Also, while chemotherapy is one of most effective methods for cancerous tissues, many of the other healthy cells are destroyed in the process. So the conventional thermotherapy has many side effects. In hyperthermia treatment, after delivering the drug to the target area, an AC magnetic field is used to generate controllable energy and increase temperature. Heat transfer in this process is a balance between blood flow, heat generation, and tissue porosity and conductivity (Sellmyer and Skomski, 2006).

Magnetic Resonance Imaging (MRI) is considered a great help in the diagnoses of many diseases. The advantages of this imaging are high contrast in soft tissue, proper resolution, and sufficient penetration depth for noninvasive diagnosis. In fact, in MRI imaging magnetization of protons is measured when exposed to the magnetic field with radio frequency (Corot, 2006).

Magnetic separation: based on the generation of magnetic forces on the particles to be separated, which are higher than opposing forces such as gravity or centrifugal forces. This principle is used to separate ferromagnetic particles from crushed scrap mixtures.

Eddy current separation: is a particular form of magnetic separation. An alternating magnetic field induces electrical eddy currents on a metal particle. This results in a magnetic field whose direction is opposite to the primary magnetic field. The exchange interactions between the magnetic fields result in a repulsive force on the metallic particle; the net effect is a forward thrust as well as a torque. This force and hence the efficiency of separation is a function of the magnetic flux, or indirectly of the electrical conductivity and density and the size and shape of the metallic particles.

Air separation/zigzag windsifter: Air-based sorting technique, which separates the light materials from the heavier. The most prominent application is in shredder plants producing the shredder light fraction, or in fridge recycling, removing among others the polyurethane (PUR) foam from the shredded scrap.

Screening: Separation of the scrap into different particle size classes is performed to improve the efficiency of the subsequent sorting processes and/or to apply different processing routes for different size fractions (based on material breakage and hence distribution over various size fractions).

Fluidized bed separation: A fluidized bed of dry sand is used to separate materials based on density. This technology is in principle a dry sink-float separation, which is still hampered by several difficulties (tubular or hollow particles filling up with sand and tend to sink; formation of unsteady current due to the use of high velocity air, etc.). The fluidized bed could also be heated for simultaneous de-coating and combustion of organic material.

Image processing (including colour sorting): Colour sorting technologies, which sense the colour of each particle and use computer control to mechanically divert particles of identical colour out of the product stream (red copper, yellow brass, etc.). A complicating issue is that shredding results in mixtures of particles that show a distribution in composition, size, shape, texture, types of inserts, coatings, etc. The variance of these properties complicates identification that is solely based on this principle.

X-ray sorting: Dual energy X-ray transmission imaging (well known for luggage safety inspections at airports) identifies particles based on the average atomic number, particle shape, internal structure (e.g. characteristic variations of thickness) and presence of characteristic insert material. It is rather sensitive to particle thickness and surface contaminations.

LIBS (laser induced breakdown spectroscopy) sorting: A series of focused ablation laser pulses are delivered to the same spot on each particle. A pulse of an ablation laser vaporizes only the first nanometres of the surface, i.e. the first pulses are necessary to clean the surface of oxide layers (different composition than the mother metal), the last pulse vaporizes a tiny amount of metal generating a highly luminescent plasma plume. The light from the plasma is collected and analysed to quantitatively determine the chemical composition. This determines to which bin the particle is directed (e.g. by air pulse).

Iron ore processors may also employ magnetic separation for beneficiation of classifier output streams. Wet high-intensity magnetic separators (WHIMS) may be used to extract high-grade fine particles from gangue, due to the greater attraction of the former to the applied magnetic field.

In addition to beneficiating the intermediate middlings streams from the classifier, WHIMS may be used as scavenger units for classifier overflow. This enables particles of sufficient grade to be recovered that would otherwise be sacrificed to tails.

Testwork has been performed on iron ore samples from various locations to validate the use of magnetic separation following classification (Horn and Wellsted, 2011). A key example was material sourced from the Orissa state in northeastern India, with a summary of results shown in Table 10.2. The allmineral allflux and gaustec units were used to provided classification and magnetic separation, respectively.

The starting grade of the sample was a low 42% Fe. It also contained significant ultrafines with 58% passing 20m. This is reflected in the low yield of allflux coarse concentrate; however, a notable 16% (abs) increase in iron grade was eventually achieved. The gaustec results for the middlings and overflow streams demonstrate the ability to recover additional high-grade material. With the three concentrate streams combined, an impressive yield of almost 64% was achieved with minimal decline in iron grade.

The automatic separation system, developed by Magnetic Separation System of Nashville, Tennessee, uses X-ray, IR, and visible spectra sensors for separating the post-consumer recyclate bottles or flakes into individual plastics and into different color groups. X-ray sensors, used for separating PVC, are very accurate and can operate at as high as 99% or better efficiency. IR and visible sensors are used to separate the colored bottles into individual polymers and color groups.

The separation system (Figure 4) essentially consists of a metering inclined conveyer, air knife, special disk screen, singulating infeed conveyor, and sensor module. A motor control system provides operator interface screens which control the sorting functions, including the number of bottles sorted into each fraction, ejection timing, and sort positions. Individual systems currently in use in Germany, Switzerland, and the United States are described in a paper by Kenny and Vaughan.16 The systems are customized, based on the composition of the post-consumer recyclate and the end application of the separated streams. Some systems use X-ray and IR sensors in two locations to achieve better separation. In addition to sorting equipment, some systems also use equipment for breaking the bales and splitting the bottles into more than one stream for smooth operation. Grinders are used when the bottles have to be ground into flakes for further processing. Whereas PVC separation is accomplished at 99%. HDPE and PET separation is between 80 and 90%, depending on the level of contamination.

Automated separation provides two advantages: improved quality and lower labor cost for sorting. The automatic separation system at Eaglebrook Plastics uses the Magnetic Separation System (MSS), which detects and separates the bottles into different categories based on the type of the resin and color, and eliminates impurities such as broken pieces of plastics, rocks, aluminum cans, and other contaminants.17 Metering the feed is critical to obtain maximum throughput at Eaglebrook. This is accomplished by a special debaling device and an incline metering system. Factors contributing to proper operation include clear height, width, spacing, belt speed, and incline angle. Proper presentation of the bottle to the sensor is critical. The bottles are split into four streams and two to three bottles are presented to the sensor per second, one at a time.

The primary identification sensor uses a multibeam, near-IR array to identify the bottles into three classes: Class 1, PVC, PET; Class 2, natural HDPE, PP; Class 3, mixed color HDPE and opaque containers. This sensor is also capable of separating colored PET from clear PET and PP from milk jug HDPE. The X-ray sensor identifies PVC, and a machine vision sensor system provides up to seven color classifications of the plastic bottles. After identification, the containers are ejected from the conveyors into appropriate collection stations using high-speed pulsed air nozzles. The motor control center (MCC) of the separation system controls motor protection, sequential slant up for the system, fault indication, and operation control. In addiiton, a touch screen input panel allows the operator to select any available sort to be directed to any ejection station. Visible light color sensors have been added which sort pigmented HDPE into different colors. The system also includes a decision cross-checking device between the primary sensor and the color sensor. This compares the decisions of the two sensors by comparing them with a logic file. The latter then provides correct identification in case there are discrepancies between the two decisions. The system has successfully operated for the last three to four years at a capacity of 5000 bottles h1.

The debaling system designed for Eaglebrook requires that the bales be presented to the debaling equipment in the same orientation as the original compression. This design feature requires less horsepower, reduces bottle clusters, and requires minimum energy. The debaling and declumping system incorporates a surge bin and metering conveyor to feed the screening system. The improved capacity and higher separation accuracy, due to increased metering efficiency, reduces bottle clusters and provides a more uniform feeding system. The separation efficiency depends on several factors. Timing and catcher bounceback accounts for 12% accuracy loss; contamination, container distortion, and loose labels contribute to about 34%, and nonsingulation of the bottles 510% of accuracy loss.

Asoma Instrument of Austin, TX, is a leading manufacturer of automated bottle sorting equipment. The company uses an X-ray fluorescence spectrophotometer sensor. The identification is completed in 10ms and the separation takes about 20s per bottle. The sorted PET streams have less than 50ppm PVC. National Recovery Technology of Nashville, TN, uses a proprietary electromagnetic screening process which can handle the bottles either in crushed or whole form and does not require any special positioning or orientation of the bottle to achieve high efficiency. Chamberlain/MCR, Hunt Valley, MD, and Automation Industrial Control of Baltimore, MD, offer a paysort bottle sorting system, which uses a sophisticated video camera and color monitor incorporating a strobe to detect and distinguish colors of post-consumer bottles following a near-IR detection system which also determines the primary resin found in each bottle.

A substantial amount of research is focused on microseparation techniques and on techniques which can reject bottles with trace amounts of harmful contaminant. Near-IR spectrometry is being used to separate bottles for household chemicals and ones with hazardous waste residues.

Sorting of automotive plastics is more difficult than sorting of plastics from packaging recyclates. Whereas only five to six polymers are used for packaging, post-consumer automotive plastics contain large numbers of engineering and commodity plastics, modified in various ways, including alloying and blending, filling, reinforcing, and foaming. Hence, sorting of automotive plastic recyclate poses several challenges. Recently, a systematic study, PRAVDA, was undertaken by a German car manufacturer and the plastic suppliers in Europe to investigate the potential of various analytical techniques in separating post-consumer automotive plastics.18

The techniques examined in this study include near-IR spectroscopy (NIR), middle-IR spectroscopy (MIR), Fourier transform Raman spectroscopy (FTR), pyrolysis mass spectrometry (PY-MS), pyrolysis IR spectroscopy (PYIR), and laser-induced emission spectral analysis (LIESA). X-ray methods were excluded because they have insufficient sensivitity to polymers, other than ones containing chlorine. Since commercial spectrophotometers were not available for most techniques except NIR, either laboratory models (MIR, FTR) or experimental stage instruments (PY-MS, PY-IR, and LIESA) were used in this study. A large number of parts (approximately 7000) were analyzed. The techniques were compared in respect to their success in identification, fault rate, time for identification, degree of penetration, and sensitivity to surface quality. The fault rate is the number of wrong identifications, given as percent. If the sum of the identification and fault rate is less than 100, the difference gives the rate of incomplete correct identification. The biggest stumbling block was the identification of black samples which could not be analyzed by NIR and FTR. MIR is the only technique which not only identified the black samples, but gave the highest identification rate. Some difficulties were experienced, however, in MIR analysis in the case of blends of two similar polymers such as PP/EPDM or nylon 6/nylon 66. The pyrolytic methods showed poorer identification rates and higher fault rates. The LIESA method is very fast and a remote technology, particularly for fast identification of heteroatoms. It is therefore suitable for identifying fillers, minerals, reinforcing fibers, pigments, flame retardants, and stabilizers specific to the individual plastic. The difficulty with MIR is that it is sensitive to surface micro-roughness and, hence, the samples need to be very smooth. Also, paint or surface coats on the part have to be removed for correct identification of the resin used for making the parts. Further, at this stage, no fiber optic or separated probe is available with MIR technology and, hence, the part has to be brought close to the spectrophotometer instead of the probe reaching the part. Another method of measuring efficiency is the level of contamination. Contamination of parts sorted by the MIR method was less than 1%, whereas contamination of parts sorted manually, using a Car Parts Dismantling Manual, is greater than 1015%. When the level of contamination is high, further separation by swim-sink or hydrocyclone techniques are necessary.

The cost of a MIR spectrophotometer is approximately DM 100000. The cost calculated for small dismantlers (dismantling less than 25 cars per day) is approximately DM 0.34 per kg and that for large dismantlers is somewhat less than DM 0.19. Manual sorting, on the other hand, would cost DM0.71 and DM0.23 per kg for small and large dismantlers, respectively. Spectrophotometric identification of plastics in automotive plastics waste therefore makes substantial economic sense.

differences and applications of magnetic separation and froth flotation | fote machinery

differences and applications of magnetic separation and froth flotation | fote machinery

The magnetic separator is the key beneficiation equipment for separating magnetic minerals from non-magnetic minerals or minerals with magnetic differences. The process is based on the different components in the separated materials, which means that in the working magnetic field, the different magnetic field forces and other forces received by different particles are used to separate different materials.

Froth flotation machine is generally used for the concentration of sulphide ores. The principle behind froth flotation process is that sulphide ores are preferentially wetted by pine oil whereas gangue articles are wetted by water.

In this process, the suspension of a powdered ore is made with water. Collectors like pine oil, fatty acids and xanthate are added to it. Froth stabilizers like wrestles and any line stabilized the froth. The mineral particles become wet by oils while gangue particles by water.

A rotating paddle agitates the mixture and draws air in it, as a result, froth is formed which carries the mineral particles. The froth is light and skimmed off, and it is then dried for the recovery of the old particles.

In order to realize the separation of different minerals through magnetic separation, it is necessary to ensure that there is a relatively obvious difference in force between different magnetic materials, especially the difference in magnetic field force.

Minerals in nature, due to their different atomic structures, exhibit different magnetic properties under the action of a magnetic field, and different minerals exhibit large magnetic differences.

Minerals are divided into non-magnetic minerals, weak magnetic minerals and strong magnetic minerals. Among them, strong magnetic minerals are the least. There are dozens of weak magnetic minerals, while non-magnetic minerals are numerous in variety.

Of course, the strength of magnetism between minerals is relative, and it is relative to the strength of the external magnetic field. With the development of magnetic separation technology and magnetic material technology, its definition has always changed.

After crushing to less than 70 mm, the ore need to be washed, sieved and classified, firstly got material with + 30 mm needs manual beneficiation, then 4.5-30 mm ore is dressed by jig, and last ore with -4.5 mm should be processed by roller-type strong magnetic field magnetic separator.

Wolfram ore coarse concentrate magnetic separation process: before separation, the material is crushed to-3 mm by roll crushers, then they are screened into three levels which are 0.83 ~ 3 mm, 0.2 ~ 0.83 mm and 0 ~ 0.2 mm, and finally you can get wolframite concentrate by magnetic classification beneficiation.

Crystalline graphite has good natural floatability, so froth flotation would be best for processing it. Since the size of graphite flakes is one of its most important quality indicators, a multi-stage grinding and multi-beneficiation process is adopted to remove large flake graphite as soon as possible.

Copper is the main valuable recyclable element in ore, and its content is 0.77%. Copper ore contains lightly oxidized sulfide ore, and the copper in the ore is mainly in copper sulfide minerals. For copper ore, there is 0.45% of primary copper sulfide, accounting for 60.57% of the total copper; secondary copper sulfide 0.27%, accounting for the total copper 36.34%; free copper oxide and combined copper content is relatively less.

The recoverable copper in the ore is mainly stored in chalcopyrite, chalcocite and a small amount of copper-bearing sulfide minerals such as copper blue and azurite, with a copper content of about 1.72%.

Fote Company is a manufacturer of a variety of mineral processing equipment, with 40 years of research and development experience and is committed to producing the most advanced mineral processing equipment.

As a leading mining machinery manufacturer and exporter in China, we are always here to provide you with high quality products and better services. Welcome to contact us through one of the following ways or visit our company and factories.

Based on the high quality and complete after-sales service, our products have been exported to more than 120 countries and regions. Fote Machinery has been the choice of more than 200,000 customers.

magnetic separation method

magnetic separation method

Magnetic separation is a process used to separate materials from those that are less or nonmagnetic. All materials have a response when placed in a magnetic field, although with most, the effect is too slight to be detected. The few materials that are strongly affected (magnetised) by magnetic fields are known as Ferromagnetics, those lesser (though noticeably) affected are known as Paramagnetics.

Ferromagnetics require relatively weak magnetic fields to be attracted and devices to separate these materials usually have magnets that are permanently magnetised (Permanent magnets do not require electricity to maintain their magnetic fields). Paramagnetics require stronger magnetic fields and these can only be achieved and maintained by electro magnets (large wire coils around an iron frame current is continuously passed through the coils creating the magnetic field within the iron. The field is concentrated across an air gap in the circuit).

Both ferromagnetic (low intensity) and paramagnetic (high intensity) separation devices (Laboratory Magnetic Separator) may be operated with dry solids or with solids in pulp form. (A complete classification of magnetic separating devices is given in Wills Mineral Processing Technology, pp. 338-356).

(*The units given are kilogauss (kG). These are the units most commonly used. The equivalent S.I. unit is the Tesla (T) * 1 Tesla = 10 kilogauss). The extremes of field strength used are based on experience from a magnetic separation testing laboratory over many years.

what is magnetic separation? (with pictures)

what is magnetic separation? (with pictures)

Magnetic separation is an industrial process where ferromagnetic contaminants are recovered from materials on the production line. Manufacturers use this to extract useful metal, separate recycling, purify materials, and perform a wide variety of other tasks. Manufacturers of magnetic separation equipment may have a range of products available for sale for different applications, including an assortment of sizes with strong and weak magnetic fields to attract different kinds of magnetic material.

The magnetic separator consists of a large rotating drum that creates a magnetic field. Materials enter the separator and fall out through mesh at the base if they are not magnetic. Sensitive particles respond to the magnetism and cling to the sides of the container. The drums can be used in continuous processing of materials as they move along the assembly line, or in batch jobs, where a single batch is run through all at once.

One common use for magnetic separation is to remove unwanted metal from a shipment of goods. Magnetic separation can help companies keep materials pure, as well as remove things like nails and staples that may have crept into a shipment. The equipment can also purify ores, separate components for recycling, and perform a variety of other tasks where metals need to be separated or isolated. Equipment can range in size from a desktop unit for a lab that needs to process small amounts of material to huge drums used in scrap metal recycling centers.

Manufacturers of magnetic separation equipment typically provide specifications for their products for the benefit of prospective customers. Consumers may need equipment that targets a specific range of metals, or could require large size or high speed capacity. It may be possible to rent or lease equipment for some applications, or if a factory wants to try a device before committing to a purchase. Used equipment is also available.

A gentler form of magnetic separation can be used for delicate tasks like removing magnetic materials from cremated remains or finds at an archaeological site. In these situations, a technician carefully moves a magnet over the material to pull out materials like staples and jewelry. At a crematorium, this is necessary before ashes are ground, as metal objects can damage the equipment. For archaeologists, it can provide a mechanism for carefully separating materials at a find and documenting the position and location of various objects as the archaeologist uncovers them on site or in a lab.

Ever since she began contributing to the site several years ago, Mary has embraced the exciting challenge of being a InfoBloom researcher and writer. Mary has a liberal arts degree from Goddard College and spends her free time reading, cooking, and exploring the great outdoors.

Ever since she began contributing to the site several years ago, Mary has embraced the exciting challenge of being a InfoBloom researcher and writer. Mary has a liberal arts degree from Goddard College and spends her free time reading, cooking, and exploring the great outdoors.

@allenJo - I do believe they use these systems in water treatment systems. I dont know the mechanisms used but it is used from what Ive heard. Water should give up its magnetic particles quite easily, I would think, since the metals are just floating about like flotsam and jetsam in the ocean.

@Charred - Those are two very good points, and I am sure that they are accounted for. The uses described in the article suggest scenarios where the metals are rather loosely fitting, so I think the cleanup job would be thorough. What I wonder about is if this process can be adapted to water treatment? Since magnetic separation systems can be used to sift through fluids, could they purify water as well? That seems to be an obvious application. Where I live the tap water has a lot of metals and so we generally dont drink it. I already have three metal fillings; I dont need more metal in my body.

What I wonder about is if this process can be adapted to water treatment? Since magnetic separation systems can be used to sift through fluids, could they purify water as well? That seems to be an obvious application. Where I live the tap water has a lot of metals and so we generally dont drink it. I already have three metal fillings; I dont need more metal in my body.

What I wonder about is if this process can be adapted to water treatment? Since magnetic separation systems can be used to sift through fluids, could they purify water as well? That seems to be an obvious application. Where I live the tap water has a lot of metals and so we generally dont drink it. I already have three metal fillings; I dont need more metal in my body.

That seems to be an obvious application. Where I live the tap water has a lot of metals and so we generally dont drink it. I already have three metal fillings; I dont need more metal in my body.

I see two things here that are necessary for magnetic separation to work well. First, the metals must be easily dislodged from whatever material or goop they happen to be sitting in. Otherwise, theyll just remain stuck, and the separation will be less than effective in pulling out all the metals. Second, the magnetic drum separator itself must be sufficiently strong. I think thats obvious, and the second point is related to the first. If the separating device is not strong it wont dislodge the metals; but there may be situations where the device is strong, but the metals are just stuck and wont budge.

Second, the magnetic drum separator itself must be sufficiently strong. I think thats obvious, and the second point is related to the first. If the separating device is not strong it wont dislodge the metals; but there may be situations where the device is strong, but the metals are just stuck and wont budge.

Second, the magnetic drum separator itself must be sufficiently strong. I think thats obvious, and the second point is related to the first. If the separating device is not strong it wont dislodge the metals; but there may be situations where the device is strong, but the metals are just stuck and wont budge.

definition of magnetic separation............,,,,,,,,,,,,,,,,,,,,,,,, - askiitians

definition of magnetic separation............,,,,,,,,,,,,,,,,,,,,,,,, - askiitians

About Us | Blog | Media Coverage | School Tie-up | Franchisee | RD Sharma Solutions | Tutor log in | Careers | FAQ's | Privacy Policy | Sitemap | Terms & Conditions | Contact Us | Pay Now | Refund Policy

Related Equipments