mining flotation cell in ball mill plant

mineral processing, equipment manufacturers, ball mills, flotation, thickener - xinhai

mineral processing, equipment manufacturers, ball mills, flotation, thickener - xinhai

Xinhai devotes to providing Turn-key Solutions for Mineral Processing Plant (EPC+M+O), namely design and research - complete equipment manufacturing and procurement - commissioning and delivery - mine management - mine operation. The essence of EPC+M+O Service is to ensure sound work in every link. The model is suitable for most of the mines in the world.

Focusing on the research and development and innovation of mineral processing equipment, Xinhai has won more than 100 national patents, strives for perfection, strives to complete the combination of equipment and technology, improve productivity, reduce energy consumption, extend equipment stable operation time, and provide cost-effective services.

With Class B design qualifications in the metallurgical industry, rich in ore mining, beneficiation, smelting technology and experience, completed more than 2,000 mine design and research, not only can provide customers with a reasonable process, but also can provide customized equipment configuration.

The precious metal minerals are mainly gold and silver mines. Xinhai Mining has more than 20 years of experience in beneficiation for gold and silver mines, especially gold ore beneficiation technology. Gold craft and placer gold selection craft etc.

With Class B design qualification, it can provide accurate tests for more than 70 kinds of minerals and design a reasonable beneficiation process. In addition, it can also provide customized complete set of mineral processing equipment and auxiliary parts.

Xinhai can provide the all-round and one-stop mineral processing plant service for clients, solving all the mine construction, operation, management problems, devoting to provide modern, high-efficiency.

Through mineral processing experiment, the mineral processing flow is customized. Multiple tests are carried out in every link, and make sure the final processing flow to guarantee the successful mineral processing plant construction.

According to tailing processing technology, Xinhai has tailings reprocessing technology and tailings dry stacking. Tailings dry stacking is the self-launched tailings dewatering technology, which is the effective technology in green mine construction.

More than 2,000 mine design and research, equipment supply projects, more than 500 mining industry chain services (EPC+M+O) projects in more than 90 countries and regions around the world, we are always committed to providing you with one-stop, customized Chemical mine solution!

design flotation plant

design flotation plant

The flowsheet was based on laboratory tests wherein troublesome factors were eliminatedahead of design and construction. The flowsheet provides for unit arrangement of equipment and for added flexibility. Two-stage closed circuit crushing (with an apron feeder for control to the jaw crusher), provides ore for grinding circuit. Crushed material is conveyed to a Screen and the oversize is returned to the secondary cone crusher. The screened fraction drops to a reversible conveyor, thence to fine ore bins.

Adjustable stroke belt ore feeders regulate the feed to two 5 x 10 Steel Head Ball Mills in closed circuit with Cross-flow Classifiers. Each classifier discharge flows by gravity to two banks of 6 Cell No. 18 Sp. Sub-A Flotation Machines. The grind, 65 mesh is held as coarse as possible to reduce grinding costs and still attain maximum recovery. Each flotation section provides six cells for roughing and three cleaning stages with provisions for elimination of one or more stages for cleaning when type of ore permits (flexibility incorporated in Sub-A Machines).

The flotation concentrates are pumped to a regrind circuit to produce desired final size meeting specifications. The final ground concentrates are thickened and filtered. Filters are directly above concentrate storage bins.

The mill site near the mine is accessible to water, power, labor and supplies, and includes adequate space for expansion and tailings disposal. The topography makes gravity flow through the mill possible and allows for delivery of ore direct from mine cars to mill.

Equipment selected gives simplicity and flexibility in operation and allows for changes in tonnages and character of ore. Due to class of labor available, complicated controls and adjustments were eliminated where possible. The machinery selected and installed permits duplication of units for expansion.

As field welding was not available, bolted steel ore bins were installed. The machinery foundations, building foundations, retaining walls and floors are concrete. The flotation machines are mounted on low piers to allow for drainage. An operating platform of wood was installed between flotation machines to give clear working space. The flotation machine launders were designed to permit changes in cleaning stages without shut-downs or prolonged delays, and permits circuit adaptation to changes in ore characteristics. A tailings thickener permits partial reclaiming of water, in dry seasons.

The correct design of a milling plant can mean its success or failure when in operation, the difference between profit and loss. Maximum metallurgical results with low operating and maintenance costs requires thorough study and sound planning. Selection of equipment and construction features must be balanced with available finances and a minimum sacrifice in operating efficiency. Here is a typical small plant where proper design resulted in a successful operation.

This 75-ton, lead-zinc-gold-silver mill was based on a flowsheet developed through batch and continuous laboratory tests. These studies showed single stage crushing and grinding to 65 % minus 65 mesh was adequate for this operation. Tests indicated that over 70% of the gold, 40% of the silver and 60% of the lead was recoverable in the grinding circuit. Therefore Unit Cell and a Mineral Jig section were installed. Adequate flotation capacity to selectively float the lead and zinc was provided, together with a small concentrating table to visually show results of flotation. The zinc and lead concentrates are pumped v direct to a 4-foot by 4-disc Filter with two compartments. This filter was placed on top of the concentrate bin which location provides desirable operating room around the filter and could be seen from almostanywhere in the mill. The concentrate bins were of laminated wood constructionsturdy and inexpensive. Filtered concentrates drop directly into the bins.

Thickeners were eliminated due to initial installation expense and extra housing required because of climate. Low dilution, by keeping sprays in flotation launders to a minimum and ability of Vertical Pump to handle frothy pulps makes this possible.

The mill site was selected several miles from the mine at a point where water, power and tailing disposal area were available, and where it was accessible even during the heavy snow season. The site is on a natural slope, permitting gravity flow in the mill with minimum pumping requirements.

Equipment is arranged as compactly as possible without crowding and without sacrifice of working space, in order to keep the mill building to minimum size. This keeps capital investment low, and reduces heating costs during cold weather. The mill building, of wood construction with laminated wood roof trusses with one-quarter pitch, was covered with insulating material and corrugated sheet material. This construction was most suitable due to the climate and

low cost of lumber in the area. A small steam boiler and unit heaters were installed for heating. Mill and crushing buildings are on concrete foundations extending about four feet below the ground line. Concrete floors of 4 to 6 thick are sloped per foot, permitting slushing down with a hose.

Crushed ore conveyor is enclosed in a conveyorway for weather protection. Fine ore bin is housed within the mill building to prevent freezing. An inclined belt feeder with variable speed drive gains elevation to grinding mill. Feeder was designed with sloping hopper to reduce load on the belt of feed discharging from the bin.

Foundation for Ball Mill was made of reinforced concrete and cast in one section to prevent distortion and misalignment due to possible settlement or shifting of the foundation. Ball mill, unit flotation cell, jig, and classifier were arranged for easy access and operation. The ball mill was equipped with a spiral discharge screen to remove oversize material ahead of unit cell and jig. The 30 spiral classifier was equipped with a rotating motor-driven paddle to remove troublesome wood chips from classifier overflow screen.

The two six-cell No. 18 (2828) Sub-A Flotation Machines were elevated on timber bents with operating platforms between the machines; this gave space belowmachines for pipe lines, launders and concentrate pumps. Reagent feeders were grouped together above flotation machines and conditioners at elevation of filter floor for gravity flow of reagents, and for accessibility.

The mill control office located in the center of the mill, was designed with large windows so almost every machine in the mill could be seen. Operating floors most frequently used were kept as nearly as possible on the same level to reduce stair climbing for the operators. Mill was designed so two men per shift could handle this plant very well.

A gallery was provided in the trussed-roof section, the length of the building, for the installation of main electrical circuits, safety switches, and magnetic motor controls. This kept most of the electrical items away from splash and dirt. All wiring was selected oversize to reduce voltage drop, giving higher operating efficiency and reduced electrical maintenance. Totally enclosed motors were used for reduced maintenance. Push button start-stop controls were placed at the machines and in the mill control office, so that any machine could be controlled from either place.

A typical problem confronting a mining operation of moderate production is how to design a mill at a reasonable cost incorporating modern equipment and essential basic principles of materials handling with the minimum construction and mill costs.

The first step in mill design is the flowsheet based on reliable ore tests. The mill capacity and equipment sizes as shown has been selected as an example for treating 500-550 short tons of ore per 24 hours per day. Two-stage grinding is to all minus 65 mesh for an average ore. Sufficient flotation capacity is included for a medium to slow floating ore. Thickening and filter capacity is selected for a 10 to 1 ratio of concentration as would be the case when treating a 3% copper ore with the copper mineral being chalcopyrite. In such case it would be necessary to filter 50 to 55 tons of concentrates each day. The use of a mineral jig or flotation unit cell in the grinding circuit is recommended. A simple test in our laboratory can tell you whether a coarse product can be recovered easily in the mill circuit.

The general design will apply to other ores with slight modification. The arrangement provides for ultimate use of gravity flow as is noted by the absence of pumps and elevators. The basic machines in plan and elevation are shown along with a flowsheet of the crushing,grinding and mill recovery circuits.

Mine run ore is fed to the primary jaw crusher by a heavy duty apron ore feeder over a grizzly. Crushed ore from the primary crusher is fed over a vibrating screen ahead of the cone crusher to remove fines. The crushing plant is normally designed to crush the entire daily mill tonnage in one shift or, at the most, 2 shifts.

Two- stage grinding provides the grinding economies outlinedin DECO Bulletin B2-B13. In the wet grinding circuit, a rod mill takes the entire feed at and reduces it to approximately 14 to 20 mesh. This mill is normally operated in open circuit with the classifier and ball mill. Usually there is a power saving with this grinding arrangement and often a substantial saving in the cost of the entire mill can be effected by reducing to a minimum some of the requirements in the crushing plant due to this method.

The ground ore overflows the classifier at -65 mesh and approximately 25% solids and is shown being conditioned ahead of flotation. Two parallel banks of Sub-A Flotation Machines on the same floor level are shown for roughing, scavenging, cleaning and recleaning. This arrangement in the flotation circuit provides maximum flexibility in the flow of material, high grade selective concentrates, and low final tailings.

Normally 10 square feet of thickener area is provided for each ton of concentrates per 24 hours which gives reserve capacity to accommodate normal filter maintenance without shutting down the flotation circuit.

In thedesign of any milling operation, continuity of flow should be given first consideration and all weak links eliminated. The old saying an hours delay means no profits today is even more important in our modern milling circuits where labor costs are high.

Many typical design plans and flowsheets are available for your use. Templates of all basic machines, scaled to 1-foot in plan and elevation facilitate laying out these plants. Free tests are made by the Laboratory to check your grinding, thickening and filtering requirements.

If you have a mill design problem, large or small, it will pay you to consult with us. We want to help your engineers in their design work. This service will enable your engineers to lay out your mill at the millsite thus saving design, construction and operating expense. Your completely designed basic plant may already be available in our files with only minor changes necessary to modify it to fit your specific application.

home - crushers, ball mills and flotation cells for mining and mineral beneficiation

home - crushers, ball mills and flotation cells for mining and mineral beneficiation

Founded in 1987, ZJH is mainly focus on producing and supply crushers,ore grinding equipment, mineral beneficiation equipment, laboratory and pilot scale ore dressing equipment for Mines and Mineral Beneficiation Plants.Our aim is to work together with the Mining and Mineral Processing Industry for helping to carry on the production technical innovation, to reduce the operating cost ,to improve the operating efficiency.

Mining thickener is mainly used for dewatering the wet concentrate during the ore dressing process. Our thickener is mostly located between cleaning beneficiation process and filtration equipment. Thickener is applied to both the concentrate and tailings to recover water. The thickener could be used to recover immediately reusable water back to mineral processing plant, as []

Complete set of Graphite Beneficiation Equipment usually includes jaw crusher, ball mill, classifier, rod mills, agitation tanks, flotation machine, rotary dryers etc. ZJH minerals as more than 30 years of professional mineral beneficiation equipment manufacturers, according to customers requirementsand actual situation, can provide ore testing, ore dressing experiments, process design, a complete set of equipment []

Asphalt from old road surface is elastic and include hard stone. sizing crusher is best choice for crushing Asphalt from old road surface. 1. The crushing work conditions: Raw material: asphalt from old road surface The feeding size: 400*400*100mm The discharged size: less than 16mm Capacity: 400t/h 2. Solutions with 2 stage crushing Primary sizing: []

Why the mineral beneficiation plant shall build a mineral processing laboratory? The ore characteristics is always changed as the mining stage different, so the present meniral beneficiation method or process do not recover the aimed mineral well. At this time, the mineral beneficiation plant shall observe the structure of the ore and analyze the nature []

Our semi-industrial flotation plant with capacity 1-3 t/d is mainly designed for semi-industrial scale test of continuous flotation. The features of mobile flotation pilot plant 1.beneficiation reagent dosing machine+ agitation tanks + flotation cells are formed a pilot flotation plant, which installed in a container for easy moving and transportation by truck. 2. easy operation. []

we recommend you adopt ourour lab jaw crushersZJEP-10060withzirconia ceramic jaw plates. itisapplicable for crushing high purity materials, avoid mixing other elements, no metal ion pollution, ensure the high purity and cleanliness of materials crushing 1, Technical data : 2, Application: our lab jaw crushers with zirconia jaw plates is applicable for crushing high purity materials, []

Quartz sand is a kind of non-metallic mineral.Its main mineral composition is silica (SiO2). Quartz sand is made by quartz ore crushing, screening, washing and other processes. its hard, wear-resisting, chemical properties of stability is widely used in glass, casting, ceramics and refractory materials, smelting ferrosilicate, metallurgical flux, metallurgy, construction, chemical, plastic, rubber, abrasive and []

Polymetallic sulfide ore dressing by flotation The copper, lead, zinc polymetallic sulfide ore has a wide variety of minerals, copper, lead, zinc sulfide. The minerals are closely symbiosis. The dissemination particle size is very uneven. It is easy to float and difficult to separate ore. According to the characteristics of the metal ore, the grinding []

The main component of bauxite is alumina. Bauxite beneficiation by flotation process can be roughly divided into washing primary beneficiation crushing grinding classification separation concentrate concentrationfiltration,several processes. Bauxite beneficiation crushing commonly used three-stage one-closed circuit crushing process;Grinding and Classification: Grinding often adopts grid type ball mill with closed circuit []

Magnetite Beneficiation or ore dressing production line combined by vibrating feeder, jaw crusher, vibrating screen, ball mill, classifier, magnetic separator, thickener and dryer and other main equipment. With the feeder, hoist, conveyor can form a complete ore dressing production line.The Magnetite Beneficiation production line has the advantages of high efficiency, low energy, high handling capacity []

The Lead and Zinc ore dressing, according to the different types of ore, then choose different ore dressing methods, also need different lead-zinc ore beneficiation equipment. Sulfide ores are usually flotation method.Oxidized ore is beneficiated by flotation or gravity separation combined with flotation, or flotation after curing roasting, or flotation after gravity separation with sulfuric []

Froth Flotation Beneficiation process is one of the important processes in the application of ore dressing, and it is widely used. Froth Flotation Beneficiation is widely used in copper, nickel ore, iron ore, gold ore, lead and zinc ore, potassium feldspar, graphite and other metal and non-metal ore concentrate selection, with high efficiency, low energy, []

Complete set of potassium feldspar beneficiation equipment usually includes jaw crusher, ball mill, classifier, magnetic separator, agitation tanks, flotation machine, high gradient magnetic separation machine etc. ZJH minerals as more than 30 years of professional mineral beneficiation equipment manufacturers, according to customers requirements and actual situation, can provide ore testing, ore dressing experiments, process design, []

Froth flotation of gold is a widely used beneficiation method for treating rock gold ore in gold concentrating plant, which is often used to treat gold ore containing sulfide minerals with high floatability. The froth flotation process can concentrate the gold in sulfide minerals to the maximum extent, and the tailings can be directly discarded. []

The production line for beneficiation of fluorite is up to the aim of fluorite concentration by the work of a series of equipment with a clear division of job. The main machine for beneficiation of fluorite includes jaw crusher, grate ball mill, overflow ball mill, spiral classifier,agitation tank, flotation cells, thickner, filter,etc. The froth flotation []

we supply Potash feldspar grinding mill. The Potash feldspar grinding mill includes the bin, belt feeder, ball mill, air classifier and bag filter. The Potash feldspar grinding mill has the follow features: high working efficiency environmental friendly The flow chart of Potash feldspar grinding mill The technical specifications of Potash feldspar grinding mill capacity: 4500kg/h []

Slag is a common raw materials for cement industry. The hardness of slag is around 6-7 in Mohs scale (harder than cement clinker). For the aim to grind slag (15-20 mm) to a final fineness of 30 microns. After the slag dry, the slag less than 50mm fed into the rolling mill, the slag will []

Clay is sticky. sizing crusher is best choice for crushing the sticky material. 1. The crushing work conditions: Raw material: clay with 10% of stones The feeding size: 200 The discharged size: less than 100mm Capacity: 300-400t/h Solutions Model: FP 63AS Power: 200KW Weight: 22 ton Dimension: refer to the attached CAD drawing the []

The basic data on the grinding system Raw material1.Calcined Alumina2.Alumina Trihydrate Feeding size200 mesh, Output sizeAlumina Trihydrate:D50=9m-1m;D97=36m-4m Calcined Alumina:D100=325mesh-800mesh Capacity0.5-0.7 T/h(on the basis of Calcined AluminaD100=800mesh),this system could produce other size product. The capacity is different according to different size. This system is also for iron avoidance superfine grinding for other hard materials, for example: []

PE 4080 Mini pollution free Jaw Crusher is mainly for crushing the geological and geochemical rock samples. It can strictly control the contamination of other elements except silicon and aluminum. It worked with our anti-pollution disc grinding mill, by which the whole process of sample preparation can be realized to prevent pollution.

ZJH mainly focus on producing and supply crushers, ore grinding equipment, mineral Beneficiation equipment, laboratory and pilot scale ore dressing equipment for Mining and Mineral Processing Industry. Our aim is to work together with Mines, Mineral Beneficiation Plantsfor helping to reduce the operating cost ,to improve the operating efficiency.

Related Equipments