of rod mill

what are the differences between ball mill and rod mill? | fote machinery

what are the differences between ball mill and rod mill? | fote machinery

Ball mill and rod mill are the common grinding equipment applied in the grinding process. They are similar in appearance and both of them are horizontal cylindrical structures. Their cylinders are equipped with grinding medium, feeder, gears, and transmission device.

The working principle of ball mill and rod mill machine is similar, too. That is, the cylinder drives the movement of the grinding medium (lifting the grinding medium to a certain height then dropping). Under the action of centrifugal force and friction, the material is impacted and ground to required size, so as to realize the operation of mineral grinding.

Grate discharge ball mill can discharge material through sieve plate, with the advantage of the low height of the discharge port which can make the material pass quickly so tha t to avoid over-grinding of material. Under the same condition, it has a higher capacity and can save more energy than other types of mills;

It is better to choose a grate discharge ball mill when the required discharge size is in the range of 0.2 to 0.3 mm. Grate discharge ball mill is usually applied in the first grinding system because it can discharge the qualified product immediately.

Overflow discharge ball mill can grind ores into the size under 0.2 mm, so it is very suitable for the second grinding system. The capacity of it is about 15% lower than grate discharge ball mill in the same specification, and the loaded grinding medium is also less than that one.

It can be divided into three types of rod mills according to the discharge methods, center and side discharge rod mill, end and side discharge rod mill and shaft neck overflow discharge rod mill.

It is fed through the shaft necks in the two ends of rod mill, and discharges ore pulp through the port in the center of the cylinder. Center and side discharge rod mill can grind ores coarsely because of its structure.

This kind of rod mill can be used for wet grinding and dry grinding. "A rod mill is recommended if we want to properly grind large grains, because the ball mill will not attack them as well as rod mills will."

It is fed through one end of the shaft neck, and with the help of several circular holes, the ore pulp is discharged to the next ring groove. The rod mill is mainly used for dry and wet grinding processes that require the production of medium-sized products.

The diameter of the shaft neck is larger than the diameter of the feeding port about 10 to 20 centimeters, so that the height difference can form a gradient for ore pulp flow. There is equipped with a spiral screen in the discharge shaft neck to remove the impurities.

It has high toughness, good manufacturability and low price. The surface layer of high manganese steel will harden rapidly under the action of great impact or contact. The harder index is five to seven times higher than other materials, and the wear resistance is greatly improved.

It has high toughness, good manufacturability and low price. The surface layer of high manganese steel will harden rapidly under the action of great impact or contact. The harder index is five to seven times higher than other materials, and the wear resistance is greatly improved.

It is made of several elements such as chromium and molybdenum, which has high hardness and good toughness. Under the same work condition, the service of this kind of ball is one time longer than the high manganese steel ball.

After the professional technology straightening and quenching processing process, a high carbon steel rod has high hardness, excellent performance, good wear resistance and outstanding quality.

The steel ball of ball mill and the mineral material are in point contact, so the finished product has a high degree of fineness, but it is also prone to over-grinding. Therefore, it is suitable for the production with high material fineness and is not suitable for the gravity beneficiation of metal ores.

The steel rod and the material are in line or surface contact, and most of the coarse particles are first crushed and then ground. Therefore, the finished product is uniform in quality, excellent in particle size, and high in qualification rate.

The cylinder shape of the rod mill and the ball mill is different: the cylinder of the rod mill is a long type, and the floor area is large. The ratio of the length to the diameter of the cylinder is generally 1.5 to 2.0;

The cylinder of the ball mill is a barrel or a cone. And the ratio of the length to the diameter of the cylinder is small, and in most cases the ratio is only slightly larger than 1, and the floor area is small, too.

The above is the main content of this article. The ball mill and the rod mill are the same type of machine on the appearance, but there are still great differences in the interior. It is very necessary to select a suitable machine for the production to optimize the product effect and maximize its efficiency.

As a leading mining machinery manufacturer and exporter in China, we are always here to provide you with high quality products and better services. Welcome to contact us through one of the following ways or visit our company and factories.

Based on the high quality and complete after-sales service, our products have been exported to more than 120 countries and regions. Fote Machinery has been the choice of more than 200,000 customers.

what is a rod mill? (with picture)

what is a rod mill? (with picture)

A rod mill is an ore grinding mechanism that uses a number of loose steel rods within a rotating drum to provide its attrition or grinding action. An ore charge is added to the drum, and as it rotates, friction between the tumbling rods breaks the ore down into finer particles. Although similar in operation, a rod mill is often more effective than a ball mill as it requires lower rotational speeds and less steel to achieve the same results. It is, however, limited to maximum rod and drum lengths of approximately 20 feet (6 meters) and is generally only used for wet grinding processes. The rod mill also tends to suffer from accelerated drum liner and lifter wear due to the increased weight of the rods.

Mills of various types have been used for centuries to break solids or coarse particulate materials down into finer finished products. From the humble mortar and pestle through animal, wind, and water driven mills to the giant electrically driven versions common in modern industrial applications, all share one common characteristic: mechanical attrition or grinding. All mill types utilize a grinding process of one or another description to gradually reduce the size of the initial charge of material. In older mills, for example, this action was achieved by placing the coarse material between two mill stones and turning one against the other to produce a finer end product.

Modern rotary mills make apply the same principle by tumbling loose grinding elements around in a closed drum to which the charge material is added. Common examples are rod and ball mills, both of which are of the rotary drum type which rely on internal grinding agents to achieve their milling action. Unlike the ball mill which utilizes a large number of hardened steel balls to impart the grinding action, the rod mill uses steel rods lying within the drum and parallel to its axis. When the drum rotates, these rods roll around inside it, thereby crushing the feed material between them.

The rod mill is generally more efficient than the ball mill due to its more effective cascading action and the greater bearing surface offered by the rods. This means it can operate at lower speeds and with less grinding agents and producing less undesirable slimes byproduct. Rod mills do, however, require more attention during operation to prevent rod tangles and are generally ineffective at dry milling operations. They are also limited to a maximum rod length of approximately 20 feet (6 meters) which means they are generally smaller than ball mills. Rod mills also exhibit more liner and lifter wear than other mill types due to the comparatively high weights of the rods.

rod mill | henan deya machinery co., ltd

rod mill | henan deya machinery co., ltd

The final stages of comminution are performed in tumbling mills using steel balls as the grinding medium and so designated ball mills. Since balls have a greater surface area per unit weight than rods, they are better suited for fine finishing. The term ball mill is restricted to those having a length to diameter ratio of 1.5 to 1 and less. Ball mills in which the length to diameter ratio is between 3 and 5 are designated tube mills. These are sometimes divided into several longitudinal compartments, each having a different charge composition; the charges can be steel balls or rods, or pebbles, and they are often used dry to grind cement clinker, gypsum, and phosphate. Tube mills having only one compartment and a charge of hard, screened ore particles as the grinding medium are known as pebble mills. They are widely used in the South African gold mines. Since the weight of pebbles per unit volume is 35-55% of that of steel balls, and as the power input is directly proportional to the volume weight of the grinding medium, the power input and capacity of pebble mills are correspondingly lower. Thus in a given grinding circuit, for a certain feed rate, a pebble mill would be much larger than a ball mill, with correspondingly higher operating cost. However, it is claimed that the increment in capital cost can be justified economically by a reduction in operating cost attributed to the lower cost of the grinding medium. This may, however, be partially offset by higher energy cost per tonne of finished product. Read more

Ball mills are a similar shape to that of the rod mills except that they are shorter with length to diameter ratios of1 to 1.5.As the name implies, the grinding media in these mills are steel balls.The particles size of the feed usually does not exceed 2.5 cm.The grinding is carried out by balls being carried up the side of the mill such that they release and fall to the point where they impact the ore particles in trailing bottom region of the slurry.If the mill is rotated too fast, the balls can be thrown too far and just strike the far end of the mill and conversely, if the mill is rotated to slow, the efficiency of the grinding process significantly reduced. Ball mills are suited for finer grinding as larger particles do not impede the impact on to smaller particle as in rod mills.

Rod mills are long cylinders filled with steel rods that grind by compressive forces and abrasion. The length of the cylinder is typically 1.5 to 2.5 times longer than the diameter. As the mill turns, the rods cascade over each other in relatively parallel fashion. One of the primary advantages of a rod mill is that it prevents over-grinding of softer particles because coarser particles act as bridges and preferentially take the compressive forces. Rod mills can take particles as coarse as 5 cm. Many of the newer operations tend to install ball mills in combination with SAG mills and avoid rod mills due the cost of the media, the cost of replacing rods and general maintenance costs. Many older operations have rod mills in combination with ball mills.

Rod mills are charged initially with a selection of rods of assorted diameters, the proportion of each size being calculated to provide maximum grinding surface and to approximate to a seasoned or equilibrium charge. A seasoned charge will contain rods of varying diameters ranging from fresh replacements to those which have worn down to such a size as to warrant removal. Actual diameters in use range from 25 to 150mm. The smaller the rod the larger is the total surface area and hence the greater is the grinding efficiency. The largest diameter should be no greater than that required to break the largest particle in the feed. A coarse feed or product normally requires larger rods. Generally, rods should be removed when they are worn down to about 25 mm in diameter or less, depending on the application, as small ones tend to bend or break. High carbon steel rods are used as they are hard, and break rather than warp when worn, so do not entangle with other rods. Optimum grinding rates are obtained with new rods when the volume is 35% of that of the shell. Thus reduces to 20-30% with wear and is maintained at this figure by substitution of new rods for worn ones. This proportion means that with normal voidage, about 45% of the mill volume is occupied. Overcharging results in inefficient grinding and increased liner and rod consumption. Rod consumption varies widely with the characteristics of the mill feed, mill speed, rod length, and product size; it is normally in the range 0.1-1.0 kg of steel per tonne of ore for wet grinding, being less for dry grinding. Rod mills are normally run at between 50 and 65% of the critical speed, so that the rods cascade rather than cataract; many operating mills have been sped up to close t0 80% of critical speed without any reports of excessive wear. The feed pulp density is usually between 65 and 85u/o solids by weight, finer feeds requiring lower pulp densities. The grinding action results from line contact of the rods on the ore particles; the rods tumble in essentially a parallel alignment, and also spin, thus acting rather like a series of crushing rolls. The coarse feed tends to spread the rods at the feed end, so producing a wedge- or cone-shaped array. This increases the tendency for grinding to take place preferentially on the larger particles, thereby producing a minimum amount of extremely fine material. This selective grinding gives a product of relatively narrow size range, with little oversize or slimes. Rod mills are therefore suitable for preparation of feed to gravity concentrators, certain flotation processes with slime problems, magnetic cobbing, and ball mills. They are nearly always run in open circuit because of this controlled size reduction.

how to select suitable ore grinding mill?

how to select suitable ore grinding mill?

About Processing Capacity of Rod Mill and Ball Mill Grinding mill is mainly applied to grinding the stone or ore into powder type. In the grinding process, the grinding media, the rod, meet with the stone or ore in a line type. The processing capacity of rod mill and ball mill are mainly refers to the following factors: the grind-ability of ore, feeding size and final product particle size, model and dimension of grinding mill, rotation speed of grinding mill, filling ratio of the grinding media, grinding density, type of classifier and the working system. Processing capacity of rod mill and ball mill are worked out by volume method and energy consumption method. Then, how to select the suitable ore grinding mill? Generally speaking, 1. Rod mill are good at coarse grinding, the final product particle size are mainly 1-3mm, and 0.5mm in the gravity concentration plant. if it is too fine, the grinding effect will decline obviously. The diameter of rod mill is usually smaller than 4500mm, and the length of rods shall be smaller than 6000mm. When the rod mill and ball mill work together, the ratio shall be 1:2. 2. Grate ball mill are also mainly used for coarse grinding. It is applied in the primary grinding or the first stage of the two stage grinding. In the closed circuit, the grinding fineness are 50%70%0.074mm. It usually matches with spiral classifier. 3. Overflow ball mill can be used in both the one stage grinding and the two-stage grinding process or the re-grinding of the semi-finished product. In the two-stage grinding process, it usually matches with the hydro-cyclone; while in the one stage grinding process, it usually matches with spiral classifier. The big ball mill whose diameter is bigger than 4000mm are usually adopts the return circuit composed by overflow ball mill and hydro-cyclone. Than not only simplify the structure of grinding mill but also be convenient for maintenance. Our company is a professional and reliable ore processing equipment manufacturer. More information about our machine, please feel free to contact with us by phone or e- mail at any time!

About Processing Capacity of Rod Mill and Ball Mill Grinding mill is mainly applied to grinding the stone or ore into powder type. In the grinding process, the grinding media, the rod, meet with the stone or ore in a line type. The processing capacity of rod mill and ball mill are mainly refers to the following factors: the grind-ability of ore, feeding size and final product particle size, model and dimension of grinding mill, rotation speed of grinding mill, filling ratio of the grinding media, grinding density, type of classifier and the working system. Processing capacity of rod mill and ball mill are worked out by volume method and energy consumption method. Then, how to select the suitable ore grinding mill? Generally speaking, 1. Rod mill are good at coarse grinding, the final product particle size are mainly 1-3mm, and 0.5mm in the gravity concentration plant. if it is too fine, the grinding effect will decline obviously. The diameter of rod mill is usually smaller than 4500mm, and the length of rods shall be smaller than 6000mm. When the rod mill and ball mill work together, the ratio shall be 1:2. 2. Grate ball mill are also mainly used for coarse grinding. It is applied in the primary grinding or the first stage of the two stage grinding. In the closed circuit, the grinding fineness are 50%70%0.074mm. It usually matches with spiral classifier. 3. Overflow ball mill can be used in both the one stage grinding and the two-stage grinding process or the re-grinding of the semi-finished product. In the two-stage grinding process, it usually matches with the hydro-cyclone; while in the one stage grinding process, it usually matches with spiral classifier. The big ball mill whose diameter is bigger than 4000mm are usually adopts the return circuit composed by overflow ball mill and hydro-cyclone. Than not only simplify the structure of grinding mill but also be convenient for maintenance. Our company is a professional and reliable ore processing equipment manufacturer. More information about our machine, please feel free to contact with us by phone or e- mail at any time!

coal mill,rod grinder,rod mill,crushing mill,grinding rod mill,pin crusher,rod grinding machine--hongxing machinery

coal mill,rod grinder,rod mill,crushing mill,grinding rod mill,pin crusher,rod grinding machine--hongxing machinery

Henan Hongxing Machinery, a technical rod grinder manufacturer in China, is a large joint-stock enterprise integrating R&D, production and sales. Henan Hongxing Machinery is second to none in various rod mill manufacturers. In Zhongyuan District, Henan Hongxing Machinery is one of the biggest crushing mill producers. It provides various crushing mills and accessories. Coal mill is one of the key products produced by Hongxing Machinery. Henan Hongxing forms strong comprehensive innovation system by virtue of years of experience accumulation and development. Experts from Hongxing Machinery remind you that product quality must be taken into consideration.

The grinding rod mill drives the cylinder in rotation by the engine through the rotation of the reducer and big gears around with the deceleration or through low speed synchronous motor driving directly peripheral big gears. The grinding rod mill is equipped with appropriate grinding medium-steel bar, which is raised to a certain height under the centrifugal force and friction force and then cast down or discharged. The to-be-crushed materials are continuously added to the cylinder, shattered by the rotating grinding medium and discharged to the next procedure by the overflow and the power of continuously feeding in materials.

ball mills vs rod mills

ball mills vs rod mills

When the mill is rotated without feed or with very fine feed, the rods are in parallel alignment and in contact with one another for their full length. New feed entering at one end of the mill causes the rod charge to spread at that end. This produces a series of wedge shaped slots tapering toward the discharge end.

The tumbling and rolling rods expend most of their crushing force on the coarse fractions of the feed material and only to a lesser degree on the finer material filling the interstices in the rod charge. The horizontal progression of material through the mill is not rapid compared to the movement of the rods and material resulting from rotation of the mill. The average particle is subjected to an action similar to many sets of rolls in series, before it is discharged. Because of this, the rod mill can effectively reduce 1 feed size to 10 mesh or finer in open circuit.

The voids (or interstitial space) within a rod load are approximately half those in a ball mill grinding load. Rods in place weigh approximately 400 pounds per cu. ft. and balls in place approximately 300 pounds per cu. ft.. Thus, quantitatively, less material can progress through the voids in the rod mill grinding media than in the ball mill, and the path of the material is more confined. This grinding action restricts the volume of feed which passes through the mill, without causing an overload condition.

The conical or convex head of our Rod Mill forms a receiving pocket at the feed end which facilitatesentrance of the feed to the grinding charge uniformly. This permits maximum grinding efficiency at the maximum rate possible before an overload occurs. In addition, this type of head construction permits the use of rods the full mill shell length, and reduces wear on the end liners.

The discharge end pocket receives and readily discharges broken rod pieces which otherwise may remain in the rod charge and reduce grinding effectiveness.Vertical feed or discharge end liners may be substituted for the conical liners, when and if desired.

The old and common terms impact and attrition are not satisfactory for designating types of grind. The reason will be obvious when it is seen that high speed and low speed gave about the same type of grind. Furthermore, the term attrition is not as specific as it was formerly regarded when it was used to signify the undesirable work of excessively small media. The reason why it is not specific is shown in this report; in batch tests, when the amounts of subsieve material were the same, the excessively big media left too many coarse particles of ore and in that respect failed as would excessively small balls. Surely attrition does not apply to the failure of the large balls; hence, attrition does not suit. Nonselective is a better term because it covers both extremes of poor work, and selective is descriptive of good work on the coarse material.

The term overgrinding is much used in conversation with mill men, but search of the literature indicates that a good definition does not exist. This is due probably to the absence of a satisfactory antonym. Selective and non-selective grinding are used here to compare products that have the same amount of the subsieve size. Then the product with the least amount of coarse sizes shows good selective grinding and the others are ground nonselectively. Stage grinding which is by repeated passes followed by removal of the finished material, is the best means of obtaining selective grinding. These terms must not be confused with differential grinding, which has to do with the relative grinding rates of two or more minerals in an ore.

Is it better to use a grinding mill with large balls or will small rods? How do you decide between using a ball mill or a rod mill? Many investigators have attributed the selective grinding of rods to line contact. Other things should be considered. In the two pairs of tests shown in table 12 the relative deportment of large balls and small rods in batch wet grinding is shown. The two loads had the same volume. The rods required about 12 percent more power and their better selective grinding is obvious.

In considering the selective grinding of the rods, it must be remembered that the rods were heavier than the heaviest balls; they weighed 7 pounds each, whereas the largest balls weighed only 5 pounds each. On the basis of weight, the rods were larger than the balls although their diameters were much smaller. The rods, being only 35 inches long, may be regarded as much more rigid than rods regularly used.

These observations should be compared with table 4, which shows that the heavier stuffed pipes did more selective grinding than the light pipes. There the diameters were the same, and unquestionably selective grinding was due to the greater weight. Hence, weight as well as diameter of the medium has to be considered in appraising selective grinding and ball milling generally.

rod mills

rod mills

The Steel Head Rod Mill(sometimes call a bar mill)gives the ore dressing engineer a very wide choice in grinding design. He can easily secure a standard Steel Head Rod Mill suited to his particular problem. The successful operation of any grinding unit is largely dependent on the method of removing the ground pulp. The Steel Head Rod Mill is available with five types of discharge trunnions and each type trunnion is available in small, medium, or large diameter. The types of Rod Mill discharge trunnions are:

The superiority of the Steel Head Rod Mill is due to the all-steel construction. The trunnions are an integral part of the cast steel heads and are machined with the axis of the mill. The mill heads are insured against breakage due to the high tensile strength of cast steel as compared to that of the cast iron head found on the ordinary rod mill. Trunnion Bearings are made of high-grade nickel babbitt, dovetailed into the casting. Ball and socket bearings can be furnished if desired.

Head and shell liners for Steel Head Rod Mills are available in Decolloy (a chrome-nickel alloy), hard iron, electric steel, molychrome steel, and manganese steel. The heads have a conical shaped head liner construction, both on the feed and discharge ends, so that there is ample room for the feed from the trunnion helical conveyor discharge to enter the mill betweenthe rods and head liners on the feed end of the mill. Drive gears are furnished either in cast tooth spur gear and pinion or cut tooth spur gear and pinion. The gears are furnished as standard on the discharge end of the mill, out of the way of the classifier return feed, but can be furnished at the mill feed end by request. Drives may be obtained according to the customers specifications.

The following table clearly illustrates why Steel Head Rod Mills have greater capacity than other mills. This is due to the fact that the diameters are measured inside the liners, while other mills measure their diameter inside the shell.

Rod Mills may be considered either fine crushers or coarse grinding equipment. They are capable of taking as large as 2 feed and making a product as fine as 35-48 mesh. Of particular advantage is their adaptability to handling wet sticky ores, which normally would cause difficulty in crushing operations. Under wet grinding conditions of course the problem of dust is eliminated.

The grinding action of a rod mill is line contact. As material travels from the feed end to the discharge end it is subjected to crushing forces inflicted by the grinding rods. The rods both tumble in essentially a parallel alignment and also spin, thus simulating the crushing and grinding action obtained from a series of roll crushers. The large feed tends to spread the rods at the feed end which imparts still an additional action which may be termed scissoring. As a result of this spreading the rods tend to work on the larger particles and thereby produce a minimum amount of extremely fine material.

The Rod Mill encourages the use of a thick pulp coating both the liners and the rods, thus minimizing steel consumption. Continuous movement of the pulp through the rod mass eliminates the possibility of short circuiting any material. The discharge end of the Rod Mill is virtually open and larger in diameter than the feed end, providing a steep gradient of material flow through the mill. This is described in more detail on pages 20 and 21.

Normally Rod Mills are furnished of the two trunnion design. For special applications they may be furnished of the tire trunnion or two- tire construction. These mills can be equipped with any type of feeder and type of drive, discussed separately in this catalog.

The above tables list some of the most common Open End Rod Mill sizes. Capacities are based on medium hard ore with mill operating in closed circuit under wet grinding conditions at speeds indicated. For dry grinding, speeds and power are reduced and capacities drop 30 to 50%.

The End Peripheral Discharge Rod Mill is designed to produce a minimum amount of fines when grinding either wet or dry. Material to be ground enters through a standard trunnion and is discharged through port openings equally spaced around the mill periphery. These ports are in a separate ring placed between the shell and the discharge head.

The construction of the end peripheral discharge mill emphasizes the principle of grinding. Due to the steep gradient between the point of entry and the point of discharge the pulp flows rapidly through the mill providing a fast change of mill content with a relatively small amount of pulp within the grinding chamber.

The sloping or conical shaped feed head proves ample space for a feed pocket to accommodate large quantities of material and assure their entrance into the grinding rods. Any type of feeder listed on pages 22 and 23 can be furnished for these mills; however, since the mills are not usually operated in closed circuit grinding, the drum or spout feeder is normally preferred.

No other type of mill is so well adapted to dry grinding materials to -4 or -8 mesh in single pass with the production of a minimum amount of fines. A major factor in dry grinding is the rapid removal of finished material to prevent cushioning of the rods. This is accomplished in the End Peripheral Discharge Rod Mill.

The free discharge feature permits the grinding of material having a higher moisture content than with other types of rod or ball mills. Our Peripheral Discharge Mills have found wide application in grinding coke and friable non-metallics, material for glass, pyroborates, as well as gravel to produce sand. Another application is for grinding and mixing sand lime brick materials. The rod action gives a thorough mixture while grinding of the hydrated lime and sand.

For specifications of End Peripheral Discharge Rod Mills use table of standard open end rod mills given on pages 24 and 25. The capacity of the end peripheral discharge rod mill is slightly higher than shown for the Open End Rod Mills.

The CPD (Center Peripheral Discharge) Rod Mill has been developed to produce sand to meet U. S. Government or State specifications. It has also found application in grinding friable non-metallics, and industrial materials and ores which tend to slime excessively. Another application is in the field of abrasion milling on ores such as found on the Mesabi Iron Range. In this latter application true grinding is not desired, but more of a surface scrubbing of the individual particles.

Again with this construction grinding may be done either wet or dry. In this design, however, feed enters both ends by means of feeders and is discharged at the center through rectangular discharge ports equally spaced around the mill periphery. The center discharge openings are generally contained in a separate ring placed between shell halves. The ground material is discharged and directed to either side or directly under the mill by the use of a discharge ring housing.

In standard rod-milling it will be found that rods spread apart at the feed end in the amount of the maximum size of feed entering the mill. In the center peripheral discharge mill the rods are spread at both ends and parallel throughout the length of the mill. This feature results in more space between the rods and thereby lessens the amount of fines produced. Furthermore, fines are also diminished because the material moves rapidly through the mill due to the steep gradient of travel and the distance of travel is reduced by half. Similarly time of contact with the grinding media is reduced by half.

Another center peripheral discharge advantage is that a cubical shaped particle is produced. Maintenance is negligible and grinding media is relatively inexpensive. Other types of sand manufacturing equipment lose efficiency with wear and require excessive maintenance. This loss of efficiency increases rapidly as hardness of feed increases. The Center Peripheral Discharge Rod Mill can be easily maintained at peak operating efficiency by the periodical addition of rods. CPD Rod Mills give a wide range of flexibility to sand plant operation. By changing the rate of feed, pulp dilution (wet grinding), and discharge port area it is possible to produce and blend sand of virtually any fineness modulus and maintain it within Government specifications.

Unlike many crushers or grinders the CPD Mill can easily handle wet or sticky material. When grinding wet, the dust nuisance is completely eliminated. For dry grinding applications the mill is furnished with a dust proof discharge housing.

Various items must be considered in computing the cost of producing manufactured sand. These include wear on the constituent parts, power consumption, lubrication, labor and general maintenance. Maintenance of the center peripheral discharge mill is definitely much lower than that of any other sand manufacturing machine. The greater portion of the wear which takes place is on the inexpensive high carbon steel rods. Field installations show an average of less than 1 # per ton of sand ground as rod consumption, and from 0.08# to 0.10# per ton of sand ground as the steel liner wear. The overall cost of mill operation, exclusive of amortization, is generally less than 30c per ton (year 1958).

Every possible operating convenience has been incorporated in the center peripheral discharge mill design. On most sizes the trunnions are carried in large lead bronze bushed bearings. The interior of the mill is readily accessible through these large trunnion openings. The peripheral ring housing is furnished with a door for inspection and another lower door to facilitate sampling of the mill discharge. Covers for the discharge ports are furnished allowing any variation in discharge area which might be desired.

Given below are approximate capacities for several sizes of the center peripheral discharge mills. Such capacities are expressed in dry tons per hour, based on - x 4 mesh screened feed of medium hard gravel. Mill discharge is generally less than 5% + 4 mesh in wet open circuit operations, for dry grinding work reduce the capacities indicated by approximately 30% to 50%.

A Rod Mill has for Working Principle its inside filledgrinding media, in this case STEEL RODS. These rods run the length of the machine, which is most commonly between eight and sixteen feet in length. The diameter of these rods will range from, when new, between two and four inches. The rods arefree inside the mill. When the mill is turned, the rods tumble against one another grinding all the ore that is between them to aid in the grinding, water is added with the ore as it enters the mill.So from that you can see why it is called a wet tumbling mill. The ore is ground wet and the mill revolves. This causes the grinding media inside of it to tumble grinding the ore.

Historically there has been three basic ways of grinding ore, hammer mills, rolls, or wet tumbling mills. Hammer mills and rolls are not used that often and then usually only for special applications as in lab work or chemical preparation.

The type of mill that is used for grinding ore in a modern concentrator is the wet tumbling mill. These mills may be divided into three types ROD MILLS, BALL MILLS andAUTOGENOUS MILLS. In the first type, the ROD MILL, the ore is introduced into the mill.

From the trunnion liner out wards first we will come to the FACE PLATE. It is slightly concave to create the POOLING AREA for the rock to collect in before entry to the ROD-LOAD. On the outside attached to the face plate is the BULL GEAR. This gear completely circles the mill and provides the interface between the motor and the mill. The bull gear and drive line may be at the other end of the mill instead. There are advantages and disadvantages to either end this will be explained later when we are discussing the motor and drive line. But for now back to the face plate, attached to the other side of the face plate is the SHELL. The shell is the body of the mill. On the inside of the mill there are two layers of material, the first layer is the BACKING for the liners. This is customarily constructed from rubber but wood may be used as well. The purpose of this backing is two-fold, one to absorb the shock that is transmitted through the liners from normal running. And to provide the shell with a protective covering to eliminate the abrasion that is produced by the finely ground rock and water. Without this rubber or wood backing, the life of the mill is drastically reduced due to metal fatigue and simply being worn away.For those of you arent familiar with METAL FATIGUE I will explain. When metal is continually pounded or vibrated, the molecular structure of the metal begins to change, it is said to CRYSTALLIZE, and the metal becomes hard and finally loses all ability to give with the vibration. Thousands of microscopic cracks will begin to appear, as the fatigue of the metal continues, these cracks will grow to become major problems.

Later for interest sake we will explain the difference in some of them, but for now lets stay with identifying the parts of the mill. We have already mentioned the trunnion liner so let start from there.

The trunnion liner may also be referred to as the THROAT LINER. You will find that many of these parts will be called two or even sometimes three names, All I can say is try not to let it confuse you, The name isnt as important as the job that it does. As long as everybody that you work with agree on which name to use, it doesnt matter that much.

Next to this liner is the END LINERS, or to some, the PACE PLATE LINERS.The FILLER RING which is next is not standard in all mills, some mills have them, and some dont. Their job is to fill the corner of the mill up so the shell will not wear at that point. They dont provide any lift to the media, in fact quite often the media will not come into contact with them at all, but what they do is make changing liners that much easier. With different liner designs the replacement of a single liner may be quite difficult and to change one could become a lengthy project.

The liner that butts into the filler liner is known as a BELLY LINER or SHELL LINER, and in some designs LIFTER BARS. These liners and/or lifters give the media its CASCADING action and also receive the most wear. They cover the complete body of the mill and have the largest selection of types to choose from.

As the two ends of the mill are the same there isnt any reason to go over the other face plate. The discharge trunnion assembly is very much like the feed trunnion except that, it wont have a worm as part of the liner. Instead of a feed seal bolted to it, it may have a screen.

This is called a TRUMMEL SCREEN and its purpose is to screen out any rock that didnt get ground as well as any TRAMP METAL or REJECT STEEL that may be coming out of the mill. Reject steel is the old grinding media that has been worn so small that it comes out of the mill. If this tramp metal and steel is allowed to get into pumps and classifiers damage and plug- ups may be caused.

With regards to Rod Mills, let us start by identifying the different portions of the rod load as it goes through one revolution, as you will see, each of these areas will hold interest for the Grinding operator.

As the rod mill turns, the rods are carried by the lifting portion of the liners. The height that they are lifted is referred to as the lift of the liners. As they roll off of the liners, the rods enter the cascade zone. The rods roll through the cascade zone until they come to the toe of the load. At this point the rods come to rest in relation to the shell of the mill. The liners lift the rods back to begin the cascade again. You will notice, that as you go deeper into the rod load, the rod movement becomes less and less until the movement is very slight at the deepest part. This area is called the core of the load. As a description of the normal grinding action, the rods and the ore react together like this. The ore enters-the mill and is deposited in the pooling area directly under the feed trunnion.

This pooling area allows the large rock to fall towards the outside portion of the load, the TOE area. This is the zone with the greatest movement in it, which means the area that will have the highest impact on the ore.

The rock will be carried up by the rods as they go through the CASCADE ZONE reducing the size of the rock. As each particle of ore becomes smaller it will work towards the CORE ZONE while travelling the length of the mill. That makes for a rather neat arrangement doesnt it. The larger rock is deposited in the area where the maximum impact from the rod load occurs and then as each particle gets smaller it slowly travels inwards towards the centre of the load.

This is where the maximum surface contact takes place, producing the finer grind. When the ore has travelled from one end of the mill to the other end it will have completed its grinding cycle in this mill. As it exits the rod load it will be deposited in another POOLING AREA prior to leaving the mill by way of the DISCHARGE TRUNNION. Prom that you can see how a mill will become over loaded. If for some reason the rock begins to separate the rods over their entire length, the larger rock will prevent the intermediate rock from being ground. Which in turn will begin to invade the area that the fine material is being ground in. As the rods become separated through the entire load, the grind will get progressively worse until the unground rock is in the discharge pooling area. At this point, the operator will notice, that large rock is being discharged from the discharge trunnion.

During normal operations there is usually a certain amount of this larger rock that wont get ground. These are known as REJECTS and they serve as one of the tattle tales as to how the mill is grinding. If there is an increase of these rejects then the mill isnt grinding that well and the operator will have to do something about it. If he doesnt the mill load will continue to climb, until the rods in the lifting zone are completely separated. When this happens those rods will have quit grinding.

There is a visual warning of this happening that the operator can take advantage of. The lift on the rods will get higher and higher until they are being carried to the very top of the mill before cascading. I think falling would be a better word for it though. As this is happening, the core of the load will be slowly moving away from the shell towards the center of the mill. This is because the volume of the mill is being filled with unground rock. This will continue until the load hits a critical volume and a critical density. The rock still coming in to the mill will have to have some where to go so it tries pushing the rods out of the mill. Unfortunately they wont make it, the first hunch of rods that get far enough into the discharge trunnion will be- hit by the rest of the load bending and twisting them until they look like SPAGHETTI. This usually shuts the mill down for a couple of days while the millwrights cut the bent rods out of the mill.

On the other end of the scale, if the density is to light, the rod load will become too active, not having the solids in the mill to cushion the impact of rod on rod and rod on liner. As the rods enter the cascade zone, the pattern of the movement of the rods will be different. Instead of having a tightly tumbling mass of rods, the rods will be separated. The lift will be higher and the cascade will form more of an arc. The impact of the rods on the rock will be less because there will be more give in the rod load, with high amount of steel on steel causing the rods to bounce.

Letslook at how these Rod mills work, as I mentioned earlier there are steel rods inside the mill, it is their job to do the actual grinding. If you look at the mill in a cross section of an end view. You will get a very good illustration of the grinding action, of the mill.

The LINERS provide the tumbling action of the rods. When the mill rotates the rods are lifted until they roll off of the liners, this is known as CASCADING. The ore enters the mill at the feed end, as the rods cascade and tumble, the rock is caught between the rods and is ground. The size that the rock will be ground to is dependent on the amount of time the ore is in the mill, how many rods there are in the mill V and the size of the incoming ore.

aggregate production plant | henan deya machinery co., ltd

aggregate production plant | henan deya machinery co., ltd

Aggregate consists of manufactured crushed stone and sand created by crushing bedrock, and naturally occurring unconsolidated sand and gravel. The infrastructure created using aggregate is a major contributor to our current standard of living. Maintaining our lifestyle, passing that lifestyle on to our progeny, and supporting others to achieve developed nation status, will require huge amounts of aggregate. This chapter describes the aggregate industry and sustainable aggregate resource management, including the complex environmental, societal, and social issues associated with the exploration, mining, processing, transportation, and recycling of aggregate resources, and the reclamation of mined-out aggregate deposits.

5. The approving officials and the public must be convinced that the operation can take place without adversely affecting the environment or their lifestyle. In other words, the operator must be able to obtain a social license to mine.

6. The operation must be profitable considering all costs including: exploration, acquisition, permitting, operation, environmental controls, compliance with regulations, transport to market, and reclamation.

The production of aggregate involves extraction and processing of the raw material into a usable product, transport of that commodity to the point of use, and the reclamation of mined-out pits or quarries. The following is a general description of the production of natural aggregate.

Related Equipments