process after copper flotation

copper flotation, extraction of copper, copper processing, copper flotation process -xinhai

copper flotation, extraction of copper, copper processing, copper flotation process -xinhai

With more than 20 years of mineral processing experience, Xinhai constantly strengthens development and innovation of copper flotation reagent, flotation process, technology and equipment. According different types of copper ores and customer demand, Xinhai finally formed four main copper flotation process systems:

Ore Property: After the mine sample test, Xinhai Mine Design Institute concluded that the ore was skarn copper, the main minerals were chalcopyrite and bornite, then magnetite and pyrite.

Xinhai Solutions: Xinhai decided to adopt three stage opening circuit crushing, one stage grinding, differential flotation two stage dewatering process. Three stage opening circuit crushing adopted Xinhai jaw crusher, the crushing product was sent to cone crusher by belt conveyor for two or three stage crushing,then sent to Xinhai grid type ball mill for grinding and classifying,the mixed slurry was sent to Xinhai JJF flotation cell. Then Xinhai added collector to the pulp for copper differential flotation, and got qualified copper concentrate, then sulfur concentrate. The tailings were sent to Xinhai magnetic separator to separate qualified iron ore concentrate. Finally, copper and sulfur concentrate were transported to high efficient thickener, thickening underflow was filtered by plate press filter.

Principle: This process floats copper concentrate and other useful minerals together and gets mixed concentrate, then separates mixed concentrate to obtain qualified copper concentrate.

Ore Property: Shandong client commissioned Xinhai Mine Research Institute to conduct ore dressing experiment after collected 50kg samples on the scene. After tested the ore properties of sample ore, Xinhai lab concluded that the main metal minerals of the project were copper, lead, zinc, and a certain amount of magnetite.

Xinhai Solutions: Xinhai Mine Research Institute carried on preliminary exploration of its processing conditions and found that the copper recovery rate was the highest in bulk flotation process. Therefore, after discussed with client, Xinhai adopted two stage closed-circuit crushing, one stage closed-circuit grinding, middlings regrinding, copper lead bulk flotation - zinc flotation - copper lead separation process. Copper lead bulk flotation adopted a roughing, three scavenging, four cleaning process. Roughing and scavenging adopted Xinhai XCF flotation cell, cleaning used Xinhai BF flotation cell. Zinc flotation adopted a roughing, three scavenging, four cleaning process, roughing and scavenging adopted KYF flotation cell, and cleaning selected SF flotation cell BF flotation cell was used in copper lead separation process. The dewatering of copper, lead and zinc concentrates used Xinhai efficient deep cone thickener+ceramic filter. The concentrate moisture was about 12% after dewatering.

Xinhai Solutions: In recent years, the ore grade of this peoject has fallen, and the flotation index of technology was not good. Therefore, Xinhai upgraded its flotation technology: adopt Xinhai JJF flotation cell to replace original flotation column, then add collector and frother as PH regulator, which strengthened concentration process, increased floating ratio of coarse grain. The recovery rate of copper concentrate reached above 94%, and copper concentrate grade was improved by 3%.

Xinhai Solutions: Xinhai decided to adopt three stage opening crushing process, closed-circuit rod mill, ball mill and hydrocyclone, single copper flotation, concentrate scavenging and tailings reelection process. After crushing and screening, grinding, and classifying, qualified mineral particles were sent to Xinhai KYF flotation cell, BF flotation cell,the alkaline medium was adjusted to PH10 ~ 10.5. Then added copper inhibitors, which greatly improved foam properties. After a roughing, scavenging and cleaning, high-quality copper concentrate was obtained.

copper flotation

copper flotation

Although basic porphyry copper flotation and metallurgy has remained virtually the same for many years, the processing equipment as well as design of the mills has continually been improved to increase production while reducing operating and maintenance costs. Also, considerable attention is paid to automatic sensing devices and automatic controls in order to assure maximum metallurgy and production at all times. For simplicity in this study most of these controls are not shown.Many of the porphyry copper deposits contain molybdenite and some also contain lead and zinc minerals.

Even though these minerals occur in relatively small amounts they can often be economically recovered as by-products for the expense of mining, crushing, and grinding is absorbed in recovery of the copper.

Because the copper in this type of ore usually assays only plus or minus 1% copper, the porphyry copper operations must be relatively large in order to be commercial. The flowsheet in this study illustrates a typical 3,000 ton per day operation. In general most operations of this type have two or more parallel grinding and flotation circuits. For additional capacity, additional parallel circuits are installed.

The crushing section consists of two or three crushing stages with the second or third stages in either closed or open circuit with vibrating screens. Generally, size of the primary crusher is not determined by capacity but by the basic size of the mine run rock. The mine-run ore is normally relatively large as most of the porphyry mines are open pit.The crushing section illustrated is designed to handle the full tonnage in approximately 8 to 16 hours thus having reserve capacity in case of expansion.

Many mills store not only the coarse ore but also the fine ore in open stockpiles using ore as the side walls and drawing the live ore from the center. During prolonged periods of crusher maintenance the ore walls can be bulldozed over the ore feeders to provide an uninterrupted supply of ore for milling.

As it is shown in this study the or 1 crushed ore is fed to a rod mill operating in open circuit and discharging a product approximately minus 14-mesh. The discharge from this primary rod mill is equally distributed to two ball mills which are in closed circuit with SRL Rubber Lined Pumps and two or more cyclone classifiers. The rod mill and two ball mills are approximately the same size for simplified maintenance.

Porphyry copper ores, usually medium to medium hard, require grinding to about 65-mesh to economically liberate the copper minerals from the gangue. Although a clean rougher tailing can often be achieved at 65-mesh the copper mineral is not liberated sufficiently to make a high grade copper concentrate, thus some form of regrinding is necessary on the rougher flotation copper concentrate. It is not unusual to grind the rougher flotation concentrate to minus 200-mesh for more complete liberation of mineral from the gangue.

The cyclone overflow from each ball mill goes to a Pulp Distributor which distributes the pulp to two or more parallel banks of Flotation Cells. These distributors are designed so that one or more flotation banks can be shut down for maintenance or inspection and still maintain equal distribution of feed to the remaining banks.

In some cases it is beneficial to have conditioning before flotation, but this varies from one operation to another and it is not shown in this flowsheet. Ten or more Free-Flow Flotation Cells are used per bank and these cells are divided into groups of four or six cells with an intermediate step-down weir between groups. Free-Flow Flotation Cells are specified, as metallurgy is extremely good while both maintenance and operating expenses are traditionally low. One or more Free-Flow Mechanisms can be stopped for inspection or even replaced for maintenance without shutting down the bank of cells.

The concentrates from rougher flotation cells are sent directly to regrind. Often the grind is 200-mesh. After regrind is flotation cleaning. In some cases the concentrate from the first three or four rougher flotation cells can be sent directly to cleaning without regrinding.

After the rougher flotation concentrate is reground it is cleaned twice in additional Free-Flow Flotation Machines with the recleaned concentrate going to final concentrate filtration or, as the metallurgy dictates, to a copper-moly separation circuit.

The thickening and filtering is similar to other milling operations, however, as the porphyry copper installations are often in arid areas, the mill tailing is usually sent to a large thickener for water reclamation and solids go to the tailings dam.

Automatic controls are usually provided throughout modern plants to measure and control pulp flow, pH and density at various points in the circuit. Feed and density controls are relatively common and the newer installations are using automatic pulp level controls on flotation machines and pump sumps. Automation is also being applied to the crushing systems.

The use of continuous on stream X-ray analysis for almost instantaneous metallurgical results is not shown in thus study but warrants careful study for both new and existing mills. Automatic sampling of all principal pulp flows are essential for reliable control.

The flowsheet in this study illustrates the modern approach to porphyry copper treatment throughout the industry. Each plant will through necessity have somewhat different arrangements or methods for accomplishing the same thing and reliable ore test data are used in most every case to plan the flowsheet and design the mill.

In most plants engaged in the flotation of ores containing copper-bearing sulphide minerals with or without pyrite, pine oil is employed as a frother with one of the xanthates or aerofloat reagents or a combination of two or more of them as the promoter. Lime is nearly always used for maintaining the alkalinity of the circuit and depressing any pyrite present. The reagent consumption is normally within the following limits

While good results are often obtained with ethyl xanthate alone as a promoter, the addition of a small quantity of one of the higher xanthates is frequently found to improve the recovery of those minerals that are not readily floated by the lower xanthate, especially those that are tarnished or oxidized, but since the action of a higher xanthate is, as a rule, more powerful than that of the ethyl compound, it is usually best to add no more of the former reagent than is necessary to bring up the less readily floatable minerals, controlling flotation with the less powerful and more selective lower xanthate. Better results are obtained with some ores by replacing the higher xanthate with one of the dithiophosphates, flotation being controlled, as before, with ethyl xanthate. Sometimes a dithiophosphate can be effectively used without the xanthate, although the dual promotion method is more common. A rule of thumb system for the selection of these reagents cannot be laid down as the character of the minerals differs so widely in different ores ; the best combination can only be found by experiment.When aerofloat is employed alone as the promoter, the reagent mixture is somewhat different from that given above. A reliable average consumption is difficult to determine as the plants working on these lines are few in number, but the following is what would normally be expected.If this combination of reagents gives results equal to those obtainable with a xanthate mixture, its employment has these advantages over the latter method: The control of flotation is not so delicate as with xanthates, it has less tendency to bring up pyrite, and, if selectivity is not required, the circuit may be neutral or only slightly alkaline.

When the ore is free from pyrite, the function of the lime, whatever the reagent mixture, is to precipitate dissolved salts and to maintain the alkalinity of the pulp at the value which has been found to givethe best results ; soda ash is seldom employed for this purpose. When pyrite is present, lime performs the additional function of a depressor, the amount used being balanced against that of the promoterthat is, no more lime should be added than is required to prevent the bulk of the pyrite from floating, as any excess tends to depress the copper minerals, and no more of the promoter should be employed than is needed to give a profitable recovery of the valuable minerals in a concentrate of the desired grade, since any excess tends to bring up pyrite. In many cases a more effective method of depressing pyrite is to add a small quantity of sodium cyanidee.g., 0.05-0.10 lb. per tonin conjunction with lime, less of the latter reagent then being necessary than if it were used alone.

It is not often that a conditioning tank has to be installed ahead of the flotation section in the treatment of sulphide copper ores, as the grinding circuit usually provides suitable points for the introduction of the reagents. The normal practice is to put lime into the primary ball mills and to add xanthates at the last possible moment before flotation, while aerofloat and di-thio-phosphates are preferably introduced at some point in the grinding circuit, since they generally need an appreciable time of contact as compared with xanthates. There is no special place for the addition of pine oil, but care should be taken if it is put into the primary ball mills, as a slight excess may cause an undue amount of froth to form in the classifiers.

In a plant where the primary slime is by-passed round the grinding circuit, it is necessary to ensure that this portion of the pulp receives its correct proportion of and contact time with the reagents.

As regards flotation installations, the present tendency is to employ machines of the air-lift or Callow-Maclntosh rather than of the subaeration type. While two stages of cleaning (circuits 10 and 11) are sometimes essential to the production of a clean final concentrate, circuits 8 and 9 comprising a single stage of cleaning are probably the most widely used. Occasionally the primary machines can be run as rougher-cleaner cells (circuit No. 5), particularly when they are of the air-lift or subaeration type. This method, however, is not often employed, although its use is more common in the flotation of copper sulphide minerals than of any other class of ore ; a stage of cleaning is preferable as providing greater lattitude of control.

Two variations of normal procedure are worth notice. In one or two plants employing two-stage grinding, improved results have been obtained by separating the slime from the primary ball mill circuit and sending it direct to a special flotation section. This method is useful when the feed to the flotation plant contains an appreciable quantity of fines, which, due generally to oxidation through exposure, require different treatment from the unweathered part of the ore. Such fines are usuallyfriable and can be separated as slime from the primary grinding circuit without the inclusion of an undue proportion of unoxidized material, the bulk of which thus passes to the secondary grinding circuit and thence to its own division of the flotation plant.

The second variation consists of grinding the rougher concentrate before cleaning. The method is applicable to an ore in which the copper- bearing minerals are so intimately associated with pyrite that very fine grinding is necessary to liberate them completely. It is often possible, after grinding such an ore to a comparatively coarse mesh, to make a profitable recovery of the copper in a low-grade concentrate which does not represent too large a proportion, say 30% or less, of the total weightof the feed. The concentrate can then be reground and refloated with the production of a high-grade copper concentrate together with a low- grade pyritic tailing suitable for return to the roughing circuit. This method is likely to be less costly than one involving the fine grinding of the whole ore. No standard system can be given for handling the various products as their disposal depends so much on the occurrence of the minerals and the efficiency of the regrinding operations, but a typical flow sheet is illustrated in circuit No. 12 (Fig. 60). It is diagrammatic to the extent that the thickener and regrinding unit may receive its feed from several roughing machines and deliver its discharge to a number of cleaning cells. It is usual to dewater the rougher concentrate and return the water to the primary circuit for two reasons : First, to supply the regrinding mill with a thick enough pulp for efficient operation, and, secondly, as far as possible to prevent the reagents used in the roughing circuit from entering the cleaning section.

In normal practice a recovery of over 90% of the copper which is present as a sulphide is generally possible, whatever the flotation process or circuit employed. As regards the average grade of concentrate, no more can be said than that it depends on the class of the copper-bearing minerals present and their mode of occurrence and on the character of the gangue. It usually contains over 20% of copper, but a difficult chalcopyritic ore may yield a concentrate with less than that percentage, while it is theoretically possible to obtain one running over 75% should the mineral consist entirely of pure chalcocite.

The flotation of native copper ores is nearly always preceded by gravity concentration in jigs and tables not only because the combined process is more economical as regards costs, but also because the copper often occurs as large grains which flatten out during grinding and cannot be broken to a size small enough for flotation. The flow sheet depends on the mode of occurrence of the mineral. The tailings from some of the gravity concentration machines may be low enough in value to be discarded, but those products which still contain too much copper to be sent to waste are thickened and reground, should either operation be necessary, and then floated with pine oil and a xanthate or aerofloat reagent in a neutral or slightly alkaline circuit. The reagent consumption is approximately the same as that given for the treatment of copper- bearing sulphides. While a pine oil, lime, and ethyl xanthate mixture has proved satisfactory, better results have sometimes been obtained by the substitution of aerofloat and sodium di-ethyl-di-thio-phosphate, soda ash being used instead of lime on account of its gangue deflocculating properties. On the average 0-12 lb. per ton of aerofloat and 0.03 lb. of the di-thio-phosphate are substituted for 0.1 lb. of xanthate.

Since a high-grade concentrate is desired in order to keep smelting costs as low as possible, the circuit usually comprises two stages of cleaning. In most plants flotation is carried out in mechanically agitated machines.

The problem of the flotation of oxidized copper ores has not yet been solved. One or two special processes are in operation for the flotation of malachite and azurite, but none of them has more than a limited application; nor has any method been worked out on a large scale for the bulk flotation of mixed oxidized and sulphide copper minerals when the former are present in the ore in appreciable quantity.

froth flotation process

froth flotation process

The Froth Flotation Process is about taking advantage of the natural hydrophobicity of liberated (well ground) minerals/metals and making/playing on making them hydrophobic (water-repel) individually to carefully separate them from one another and the slurry they are in. For this purpose we use chemicals/reagents:

The froth flotation process was patented by E. L.Sulman, H. F. K. Pickard, and John Ballot in 1906, 19 years after the first cyanide process patents of MacArthur and the Forests. It was the result of the intelligent recognition of a remarkable phenomenon which occurred while they were experimenting with the Cattermole process. This was the beginning. When it became clear that froth flotation could save the extremely fine free mineral in the slime, with a higher recovery than even gravity concentration could make under the most favorable conditions, such as slime-free pulp, froth flotation forged ahead to revolutionize the nonferrous mining industry. The principles of froth flotation are a complex combination of the laws of surface chemistry, colloidal chemistry, crystallography, and physics, which even after 50 years are not clearly understood. Its results are obtained by specific chemical reagents and the control of chemical conditions. It not only concentrates given minerals but also separates minerals which previously were inseparable by gravity concentration.

This new process, flotation, whose basic principles were not understood in the early days, was given to metallurgists and mill men to operate. Their previous experience gave them little guidance for overcoming the serious difficulties which they encountered. Few of them knew organic chemistry. Those in charge of flotation rarely had flotation laboratories. Flotation research was done by cut and try and empirical methods. The mining industry had no well equipped research laboratories manned by scientific teams.

Froth flotation, as pointed out previously, was a part of the evolution of milling during the first quarter of the 20th centurya period during which the progress of milling was greater than in all of its previous history. It marks the passing of the stamp battery, after 400 years service to the mining industry, and the beginning of grinding with rod mills, ball mills, and tube mills without which neither the cyanide process nor the froth flotation process would have reached full realization. More than all of these, it was the time when custom and tradition were replaced by technical knowledge and technical control.

This volume, then, is dedicated to those men who, with limited means, made froth flotation what it is today. It is designed to record the impact of this great ore treatment development on the mining industry both present and future.

The single most important methodused for the recovery and upgrading ofsulfide ores, thats howG. J. Jameson described the froth flotation process in 1992. And its true: this process, used in several processing industries, is able to selectively separatehydrophobic fromhydrophilic materials,by taking advantage of the different categories of hydrophobicity that areincreased by using surfactants and wetting agents during the processalso applied to wastewater treatment or paper recycling.

The mining field wouldnt be the same without this innovation, considered one of the greatest technologies applied to the industry in the twentieth century. Its consequent development boosted the recovery of valuableminerals like copper, for instance. Our world, full of copper wires usedfor electrical conduction and electrical motors, wouldnt be the same without this innovative process.

During the froth flotation process, occurs the separation of several types ofsulfides,carbonatesandoxides,prior to further refinement.Phosphatesandcoalcan also be purified by flotation technology.

Flotation can be performed by different types of machines, in rectangular or cylindrical mechanically agitated cells or tanks, columns, aJameson Flotation Cellor deinking flotation machines. The mechanical cells are based in a large mixer and diffuser mechanism that can be found at the bottom of the mixing tank and introduces air, providing a mixing action.The flotation columnsuse airspargersto generate air at the bottom of a tall column, while introducing slurry above and generating a mixing action, as well.

Mechanical cells usually have a higher throughput rate, but end up producing lower quality material, while flotation columns work the other way around, with a lower throughput rate but higher quality material.The Jameson cell just combines the slurry with air in a downcomer: then, a high shear creates the turbulent conditions required for bubble particle contacting.

Advantages of froth flotation: first of all, almostallmineralscan be separatedbythis process. Then, the surface propertiescan be controlledandaltered by the flotationreagent. Finally, this technique is highly appropriate for the separation ofsulfideminerals.

To help towards an understanding of the reasons for the employment of specific types of reagents and of the methods of using them, an outline of the principal theoretical factors which govern their application may be of service. For a full discussion of the theory of flotation the various papers and text-books which deal with this aspect should be consulted.

The physical phenomena involved in the flotation of minerals, those, for example, of liquid and solid surface-tensions, interfacial tension, adsorption, flocculation, and deflocculation, are the manifestations or effects of the surface-energies possessed by all liquids and solids in varying degree. These, in turn, arise from the attractions which exist between the interior molecules of every substance and are responsible for their distinctive propertiesform, fluidity, cohesion, hardness, and so on. It follows, therefore, that every substance must exhibit some degree of surface-energy.

All the solids normally present in an ore i.e., metallic, non-metallic, and rock-forming mineralshave their particular contact-angle and hysteresis values and therefore tend to be wetted in varying degrees in accordance with such values. These differences, however, are not usually sufficient to allow of the effective separation of the mineral and gangue constituents from each other. It is the function of the flotation reagents employed to accentuate or magnify these differences to a degree which renders separation by flotation practicable. Some reagents (modifiers) are added with the object of decreasing the contact-angle and so increasing the degree of wetting of the unwanted particles, which are usually more prone to become wetted than the wanted minerals. Others (promoters) are added to increase the tendency toward non-wetting shown by the valuable minerals by coating them with a film of yet higher contact-angle value. Such films are said to be adsorbed in respect of the water.

In this connection reference to Fig. 28 will indicate that a reagent which decreases the surface-tension of water tends thereby to increase wetting of the solid, since, if the value of S1 and therefore of its horizontal component, is lessened, the water-edge, as at P, will tend to extend over the solid surface, making therewith a smaller contact-angle.

The reagents added to promote the separation of the wanted minerals by increasing the water/solid contact-angle consist of substances whose molecules or minute suspensions have a markedly lower attraction for water molecules than the latter exert between themselves. Finely divided oil emulsions in water, dissolved xanthates, and other promoters are typical of such reagents. Substances of such nature, when dissolved in or disseminated through water, are pre-eminently adsorbed, or thrust towards the water boundaries, where the intra-molecular attractions are less uniformly balanced. Normally, this would occur at the free or air/water surface. In a pulp, however, from which air surfaces are absent, but in which mineral particles are suspended, the same thing takes place at the water/solid boundaries, adsorption being most pronounced at those faces where the interfacial tension is greatest viz., those with the highest contact-angle value and lowest adhesion for water. The minute particles of oil or xanthate molecules are thus virtuallythrust into adherence with the more floatable solids, whose surfaces they therefore film, increasing the contact-angles to their own high values and so rendering the solid more floatable. Experimental work indicates that the film so formed is of the order of one molecule in thickness.

Adsorption can be both positive and negative. Substances whose molecules have less attraction for water than the water molecules have for each other are concentrated at the water boundaries as explained in the foregoing paragraph ; this is termed positive adsorption, but substances whose molecules have a greater attraction for water molecules than the latter have for each other will tend to be dragged away from the surface layers, at which their concentration thus becomes less than in the interior of the liquid ; this is negative adsorption. Substances that are negatively adsorbed are those which tend to form chemical compounds or definite hydrates with water, such as sulphuric acid. In froth flotation we are concerned more with positive than with negative adsorption.

In some cases a chemical reaction between the solid and the reagent occurs at the interface ; for instance, in the activation of sphalerite by copper sulphate a film of copper sulphide is deposited on the mineral following adsorption of the copper salt at its surface. In many cases there is no evidence of any chemical change, but, whether chemical action takes place or not, there is no doubt that the filming of the mineral is due primarily to the adsorption property of the liquid itself, by virtue of which the promoting reagent dissolved or suspended in it is concentrated at the interface.

The chemical action of flotation reagents has been and still is the subject of a great deal of research work, which is bringing the various theories into common agreement, but there are still too many doubtful points and unexplained phenomena to make a simple explanation possible in these pages.

The foregoing paragraphs can be summarized by stating that the reagents employed in froth flotation can be classified into three general groups, comprising frothers, promoters, and modifiers, respectively, the purposes of each class being as follows :

The operation of flotation is not always confined to the separation of the valuable constituents of an ore in a single concentrate from a gangue composed of rock-forming minerals. It often happens that two classes of floatable minerals are present, of which only one is required. The process of floating one class in preference to another is termed selective or preferential flotation , the former being perhaps the better term to use. When both classes of minerals are required in separate concentrates, the process by which first one and then the other is floated is often called differential flotation , but in modern practice the operation is described as two-stage selective flotation .

Selective flotation has, therefore, given rise to two other classes of reagents, each of which may be regarded as falling within one of the classes already mentioned. They are known as depressing and activating reagents.

The use of these reagents has been extended in recent years to three- stage selective flotation. For example, ores containing the sulphide minerals of lead, zinc, and iron, can be treated to yield three successive concentrates, wherein each class of minerals is recovered separately more or less uncontaminated by the others.

Although the flotation of the commoner ores, notably those containing copper and lead-zinc minerals, has become standardized to some extent, there is nevertheless considerable variation in the amount and nature of the reagents required for their treatment. For this reason the running costs of the flotation section of a plant are somewhat difficult to predict accurately without some test data as a basis, more especially as the cost of reagents is usually the largest item. Tables 32 and 33 can therefore only be regarded as approximations. Table 32 gives the cost of the straightforward treatment in air-lift machines of a simple ore such as one containing easily floated sulphide copper minerals, and Table 33 that of the two-stage selective flotation of a lead-zinc or similar complex ore.

From Table 32 it will be seen that the reagent charge is likely to be the largest item even in the flotation of an ore that is comparatively easy to treat, except in the case of a very small plant, when the labour charge may exceed it. At one time the power consumption in the flotation section was as expensive an item as that of the reagents, but the development of the modern types of air-lift and pneumatic machines has made great economies possible in expenditure under this heading. As a ruleCallow-Maclntosh machines require less power than those of the air-lift type to give the same results, while subaeration machines can seldom compete with either in the flotation of simple ores, although improvements in their design in recent years have resulted in considerable reductions in the power needed to drive them. It should be noted that the power costs given in the table include pumping the pulp a short distance to the flotation machines, as would be necessary in an installation built on a flat site, and the elevation of the rougher and scavenger concentrates as in circuits such as Nos. 9 and 10.

The power costs decrease with increasing tonnage because of the greater economy of larger units and the lower price of power when produced on a large scale. The cost in respect of reagents and supplies also decreases as the size of the plant increases, due to better control and organization and to lower first cost and freight rates of supplies when purchased in bulk. The great disadvantage of a small installation lies in the high labour cost. This, however, shows a rapid reduction with increase of tonnage up to 1,000 tons per day, the reason being that with modern methods a flotation section handling this tonnage requires few more operators than one designed for only 200 tons per day. For installations of greater capacity the decrease is comparatively slight, since the plant then generally consists of parallel 1,000-ton units, each one requiring the same operating force ; the reduction in the cost of labour through increase of tonnage is then due chiefly to the lower cost of supervision and better facilities for maintenance and repairs. Provided that the installation is of such a size as to assure reasonable economy of labour, research work and attention to the technical details of flotation are generally the most effective methods of reducing costs, since improved metallurgy is likely to result in a lower reagent consumption if not in decreased power requirements.

The costs given in Table 33 may be considered as applying to a plant built on a flat site for the two-stage selective flotation of a complex ore in subaeration machines with a tank for conditioning the pulp ahead of each stage and one cleaning operation for each rougher concentrate. It is evident that the reagent charge is by far the largest item of cost. This probably accounts for the more or less general use of machines of the mechanically agitated type for complex ores in spite of their higher power consumption and upkeep costs, since the high-speed conditioning action of the impellers and provision for the accurate regulation of each cell offer the possibility of keeping the reagent consumption at a minimum. As in the case of single-stage flotation, the charge for labour falls rapidly as the capacity of the plant increases to 1,000 tons per day ; beyond this point the rate of decrease of this and all other items of cost with increase of tonnage is less rapid. The remarks in the previous paragraph concerning the importance of research work and attention to technical details apply with added force, because of the possibility through improved metallurgy of reducing the much higher reagent and power costs which a complex ore of the class in question has to bear.

copper ore processing plant, copper flotation plant, copper mining process, copper concentrate plant, copper extraction plant

copper ore processing plant, copper flotation plant, copper mining process, copper concentrate plant, copper extraction plant

Ore Property: After the mine sample test, Xinhai Mine Design Institute concluded that the ore was skarn copper, the main minerals were chalcopyrite and bornite, then magnetite and pyrite.

Xinhai Solutions: Xinhai decided to adopt three stage opening circuit crushing, one stage grinding, differential flotation two stage dewatering process. Three stage opening circuit crushing adopted Xinhai jaw crusher, the crushing product was sent to cone crusher by belt conveyor for two or three stage crushing,then sent to Xinhai grid type ball mill for grinding and classifying,the mixed slurry was sent to Xinhai JJF flotation cell. Then Xinhai added collector to the pulp for copper differential flotation, and got qualified copper concentrate, then sulfur concentrate. The tailings were sent to Xinhai magnetic separator to separate qualified iron ore concentrate. Finally, copper and sulfur concentrate were transported to high efficient thickener, thickening underflow was filtered by plate press filter.

Principle: This process floats copper concentrate and other useful minerals together and gets mixed concentrate, then separates mixed concentrate to obtain qualified copper concentrate.

Ore Property: Shandong client commissioned Xinhai Mine Research Institute to conduct ore dressing experiment after collected 50kg samples on the scene. After tested the ore properties of sample ore, Xinhai lab concluded that the main metal minerals of the project were copper, lead, zinc, and a certain amount of magnetite.

Xinhai Solutions: Xinhai Mine Research Institute carried on preliminary exploration of its processing conditions and found that the copper recovery rate was the highest in bulk flotation process. Therefore, after discussed with client, Xinhai adopted two stage closed-circuit crushing, one stage closed-circuit grinding, middlings regrinding, copper lead bulk flotation - zinc flotation - copper lead separation process. Copper lead bulk flotation adopted a roughing, three scavenging, four cleaning process. Roughing and scavenging adopted Xinhai XCF flotation cell, cleaning used Xinhai BF flotation cell. Zinc flotation adopted a roughing, three scavenging, four cleaning process, roughing and scavenging adopted KYF flotation cell, and cleaning selected SF flotation cell BF flotation cell was used in copper lead separation process. The dewatering of copper, lead and zinc concentrates used Xinhai efficient deep cone thickener+ceramic filter. The concentrate moisture was about 12% after dewatering.

Xinhai Solutions: In recent years, the ore grade of this peoject has fallen, and the flotation index of technology was not good. Therefore, Xinhai upgraded its flotation technology: adopt Xinhai JJF flotation cell to replace original flotation column, then add collector and frother as PH regulator, which strengthened concentration process, increased floating ratio of coarse grain. The recovery rate of copper concentrate reached above 94%, and copper concentrate grade was improved by 3%.

Xinhai Solutions: Xinhai decided to adopt three stage opening crushing process, closed-circuit rod mill, ball mill and hydrocyclone, single copper flotation, concentrate scavenging and tailings reelection process. After crushing and screening, grinding, and classifying, qualified mineral particles were sent to Xinhai KYF flotation cell, BF flotation cell,the alkaline medium was adjusted to PH10 ~ 10.5. Then added copper inhibitors, which greatly improved foam properties. After a roughing, scavenging and cleaning, high-quality copper concentrate was obtained.

enhancing the flotation recovery of copper minerals in smelter slags from namibia prior to disposal - sciencedirect

enhancing the flotation recovery of copper minerals in smelter slags from namibia prior to disposal - sciencedirect

Namibia Custom Smelters (NCS) process a range of copper concentrates in their three furnaces, namely; top submerged lance, copper converter and reverberatory furnaces, in order to produce mattes and fayalitic slags. The copper content of the slags range between 0.8 to 5 wt. % and this is considered too high for disposal to the environment. Currently, the slags are sent to a milling and flotation plant for liberation and recovery of residual copper. The copper recoveries realized in the plant are much lower than expected and it has been postulated that some copper minerals may be occurring in forms that are more difficult to float like oxides or fine disseminations in the gangue matrix. Mineralogical analysis of the slag samples was done using X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. The analysis did not reveal the presence of copper oxide minerals, however most scans showed copper sulphide minerals as free grains and some finely disseminated in fayalite gangue. In the first phase of the present experimental studies, the slags were milled to 75% passing 45 microns, which is the degree of milling done in the existing plant mill-float circuit. A range of commercial flotation reagents that include xanthates, dithiophosphates, mercaptobenzothiazole, thionocarbamates, fatty acids, sulphides and sulphates were used in the flotation test-work. The copper recoveries obtained in the mill-float stage were between 70 - 80%. In the second phase of the study, the flotation tailings were further milled to 90% passing 45 microns and floated. The cumulative copper recoveries increased markedly to over 90%, which represents a significant improvement in comparison to the recoveries obtained from the mill-float process. Sodium alkyl dithiophosphate, mercaptobenzothiazole (FC7245) was found to be the secondary flotation reagent that gave the best copper recoveries.

7 factors affecting froth flotation process - jxsc machine

7 factors affecting froth flotation process - jxsc machine

The full name of the flotation is called froth flotation. It is the process of selecting minerals from the pulp by means of the buoyancy of the bubbles, depending on the difference in the surface properties of the various minerals. Where to buy flotation machines?

The specific process of flotation is to add various flotation reagents to a certain concentration of slurry, and a large number of diffuse bubbles are generated by stirring and aeration in the flotation machine. At this time, the suspended ore collides with the bubbles, and some of The floatable ore particles adhere to the bubbles, and float up to the surface of the ore to form a foam product, which is the concentrate; the non-floating mineral remains in the slurry and becomes the tailings. Thereby, achieve the purpose of mineral sorting.

Froth Flotation machine plays an indispensable role in the mineral beneficiation process, flotation is susceptible to a number of factors during the process, including grinding fineness, slurry concentration, pulp pH, pharmaceutical system, aeration and agitation, flotation time, water quality and other process factors. The factors that affect the flotation process are detailed below.

Both large ore particles (larger than 0.1mm) and small ore particles (less than 0.006mm) affect flotation efficiency and mineral recovery. In the case of flotation coarse particles, due to the heavyweight, it is not easy to suspend in the flotation machine, and the chance of collision with the bubbles is reduced. Further, after the coarse particles adhere to the air bubbles, they are easily detached from the air bubbles due to the large dropout force. Therefore, the coarse particles have a poor flotation effect under the general process conditions.

During the fine particles flotation separation process, the fine particles are small in volume and the possibility of collision with the bubbles is small. The fine grain quality is small, and when it collides with the bubble, it is difficult to overcome the resistance of the hydration layer between the ore particle and the bubble, and it is difficult to adhere to the bubble.

The content of the coarse-grained monomer must be less than the upper limit of the particle size of the mineral flotation. At present, the upper limit of flotation particle size is generally 0.25-0.3 mm for sulfide minerals; 0.5-1 mm for natural sulfur; and the upper limit of particle size for coal is 1-2 mm.3.Avoid muddy as much as possible. When the flotation particle size is less than 0.01 mm, the flotation index will decay significantly.

The most appropriate grinding fineness must be determined by testing and reference to production practice data. For some ores, the stage grinding and stage selection process are often used to avoid over-grinding of the ore, so that the dissociated ore particles are selected in time.

If the froth machine contains much ore slurry, it will bring a series of adverse effects on flotation cells mineral processing. The main influences are as follows 1 Easy to be mixed in the foam product, so that the concentrate grade is reduced. 2 Easy to cover the coarse grain surface, affecting the flotation of coarse particles. 3 Adsorption of a large number of agents, increase drug consumption. 4 The pulp is sticky and the aeration conditions are deteriorated.

The type and quantity of the agent added during the flotation process, the dosing place and the dosing method are collectively referred to as the drug system, also known as the prescription. It has a major impact on flotation indicators.

In the ore dressing, it is necessary to pass the ore selectivity test in order to determine the type and quantity of the agent, and in practice, the number, location and mode of dosing should be constantly revised and improved.

In addition to oxygen, nitrogen and inert gases, there are carbon dioxide and water vapor in the air. The gas has a selective effect on the surface of the mineral, oxygen is the most important factor affecting the surface of minerals. Oxygen is beneficial to the hydrophobicity of sulphide ores/ sulfine flotation, however, if the action time is too long, the mineral surface will return to hydrophilicity. When the gas adsorption conditions are appropriate, the mineral surface will be drained, the flotation mineral processing can be done even without a flotation agent. The Galena mine can only float up with the action of xanthate through the initial action of oxygen.

Stirring the slurry can promote the suspension of the ore particles and evenly disperse in the tank, thus promote the good dispersion of the air and make it evenly distributed in the tank, further can promote the enhanced dissolution of air in the high-pressure area of the tank, and strengthen the precipitation in the low-pressure area. Enhanced aeration and agitation are advantageous for flotation separation, but not excessively, as excessive aeration and agitation can have the following disadvantages: (1) Promoted the merger of bubbles (2) Reduced concentrate quality (3) Increased power consumption (4) Increased wear of various parts of the flotation machine (5) The volume of the slurry in the tank is reduced (this is because the volume of the tank is increased by the portion occupied by the bubble) (6) Excessive agitation may also cause the ore particles attached to the bubbles to fall off. The optimum amount of aeration and agitation in production should be determined by experimentation depending on the type and structural characteristics of the flotation machine.

Inflation and agitation are carried out simultaneous in the flotation machine. Strengthening them is beneficial to increase the flotation index, but if it is determined too much, it will cause shortcomings such as bubble merger, degraded quality, increased electric energy consumption, and mechanical wear. Therefore, aeration and agitation must be appropriate.

The slurry concentration can affect the following technical and economic indicators: (1) Recovery rate. When the slurry concentration is small, the recovery rate is low. As the concentration of the slurry increases, the recovery rate also increases, but the recovery rate exceeds the limit. The main reason is that the concentration is too high, which destroys the aeration condition of the flotation machine. (2) Quality of concentrates. The general rule is that the quality of the concentrate is higher in the flotation of the leaner slurry, and the quality of the concentrate is reduced in the flotation of the richer slurry. (3) Consumption of pharmaceuticals. When the slurry is thicker, the amount of treatment per ton of ore is less, and when the concentration of the slurry is thinner, the amount of treatment per ton of ore is increased. (4) The production capacity of the flotation equipment. As the concentration of the slurry increases, the production capacity of the froth flotation machine calculated according to the treatment amount also increases. (5) Water and electricity consumption. The thicker the pulp, the smaller the water and electricity consumption per ton of ore processed. In short, when the concentration of the slurry is thick, it is beneficial to the flotation process. However, if the slurry and bubbles do not flow freely, the aeration will deteriorate, thereby reducing the quality and recovery. In this case, the various ore sections of the flotation should determine the appropriate concentration of the slurry according to the nature of the ore and relevant technical requirements.

The most suitable ore pulp concentration during the flotation process is related to the ore property and the flotation processing conditions. The general rules as flow: (1) Pulp Density. The mineral with large flotation density uses a thicker slurry, while the mineral with a small flotation density uses a thinner slurry. Flotation of coarse-grained materials with thicker slurry, flotation of fine-grained and muddy materials with thinner ore. (2) Pulp PH Value. The pH of the pulp refers to the concentration of OH and H+ in the slurry, which is generally expressed by the PH value. Various minerals have a floating and non-floating pH when using different flotation agents for flotation, The pH of the critical pH. By controlling the critical pH, it is possible to control the effective sorting of various minerals. Therefore, controlling the pH value of the slurry is one of the important measures to control the flotation process. (3) Flotation Time. The flotation time directly affects the quality of the indicator. The time is too long, the grade of the concentrate is reduced; the time is too short and the grade of the tailings is increased. Therefore, the flotation time required for various Minerals must be determined by experimentation. (4) Water Quality. Floating water should not contain a large number of suspended particulates, nor can it contains soluble substances and various microorganisms that may interact with minerals or flotation reagents. This problem should be specially noticed when using backwater, pit water, and lake water. (5) Pulp Temperature. Flotation is generally carried out at room temperature, but sometimes it is necessary to warm the slurry in order to obtain a good sorting effect. The specific heating or not needs to be determined according to the actual situation. If it is heated, it is best to adapt to local conditions and use waste heat and exhaust gas as much as possible.

The main effects of pulp quality score on froth flotation process in metallurgy are as follows: (1) Recovery rate. Within a certain range, when the pulp mass fraction is low, the recovery rate is low; the pulp mass fraction is increased, and the recovery rate is correspondingly increased. However, the mass fraction of the slurry should not be too large. If it is too large, the flotation machine is difficult to inflate normally in the slurry, which in turn reduces the recovery rate.

(2) Concentrate grade. The general rule is that the concentrate grade is higher when ore flotation is carried out in a leaner slurry, while the concentrate grade is reduced when it is floated in a thicker slurry.

(3) The dosage of the agent. The flotation agent should maintain a certain mass fraction in the pulp to have a good flotation effect. When the pulp is thicker, the mass fraction of the medicament is correspondingly increased, that is, the required medicament mass fraction can be achieved with fewer chemicals, and the amount of medicament per tan ore is correspondingly reduced. Conversely, when the pulp is thinner, the amount of the agent increases.

Thats all 7 main variables affecting froth flotation. Contact us to know more info about industrial gold mining equipment, get free froth flotation PDF, flotation process flow chart, and related industry cases of gold froth flotation, zinc froth flotation, copper flotation, ore flotation.

Since the content of useful components in the ore that needs flotation treatment is getting lower and lower, the particle size of the impregnation is getting finer and finer, and the composition is more and more complicated and difficult to separate. Therefore, how to design an efficient mineral flotation flow is of the utmost importance.

development of copper recovery process from flotation tailings by a combined method of highpressure leachingsolvent extraction - sciencedirect

development of copper recovery process from flotation tailings by a combined method of highpressure leachingsolvent extraction - sciencedirect

A new flotation tailings treatment process was developed for efficient Cu recovery.An efficient Cu dissolution was achieved in an H2O media in presence of pyrite.The dissolution mechanism of CuFeS2 has been confirmed to be a multistage reaction.Fe was always co-dissolved with Cu following a linear relation of CFe=38.393CCu.Over 91% Cu was extracted from pregnant leach solutions by LIX-84I in Kerosene.

Sulfide copper mineral, typically Chalcopyrite (CuFeS2), is one of the most common minerals for producing metallic copper via the pyrometallurgical process. Generally, flotation tailings are produced as a byproduct of flotation and still consist of unrecovered copper. In addition, it is expected that more tailings will be produced in the coming years due to the increased exploration of lowgrade copper ores. Therefore, this research aims to develop a copper recovery process from flotation tailings using highpressure leaching (HPL) followed by solvent extraction. Over 94.4% copper was dissolved from the sample (CuFeS2 as main copper mineral) by HPL in a H2O media in the presence of pyrite, whereas the iron was codissolved with copper according to an equation given as CCu=38.40CFe. To avoid codissolved iron giving a negative effect on the subsequent process of electrowinning, solvent extraction was conducted on the pregnant leach solution for improving copper concentration. The result showed that 91.3% copper was recovered in a stripped solution and 98.6% iron was removed under the optimal extraction conditions. As a result, 86.2% of copper was recovered from the concentrate of flotation tailings by a proposed HPLsolvent extraction process.

the recovery of copper from smelting slag by flotation process | springerlink

the recovery of copper from smelting slag by flotation process | springerlink

Aiming at the recovery of copper from smelting slag, a flotation approach was studied. It was found that this slag composed of fine particles with complex association and distribution, in which bornite was the main copper-bearing mineral after a detailed mineralogy analysis via polarizing microscope, SEM and XRD. Consequently, flotation was attempted to recycle Cu in slag containing copper sulphide components. Three key factors affecting flotation were ascertained, namely, grinding fineness, the collector and the pH value, while the recovery of Cu estimated by ICP and XRF. Copper concentrate grading at 14.47 with 79.66% Cu recovery was obtained, in the condition of the grinding fineness of 0.074mm and the proportion of 80%, reagent dosages of 50g/t for butyl xanthate and a pH value of 10 adjusted using Na2CO3.

Related Equipments