## dual roll crushers, how they function

Roll crushers have a theoretical MAXIMUM reduction ratio of 4:1. If a 2 inch particle is fed to the roll crusher the absolute smallest size one could expect from the crusher is 1/2 inch. Roll crushers will only crush material down to a minimum particle size of about 10 Mesh (2 mm). A roll crusher crushes using compression, with two rolls rotating about a shaft, towards the gap between the rolls. The gap between the rolls is set to the size of product desired, with the realization that the largest feed particle can only be 4 times the gap dimension. The particles are drawn into the gap between the rolls by their rotating motion and a friction angle formed between the rolls and the particle, called the nip angle. The two rolls force the particle between their rotating surface into the ever smaller gap area, and it fractures from the compressive forces presented by the rotating rolls. Some major advantages of roll crushers are they give a very fine product size distribution and they produce very little dust or fines. Rolls crushers are effectively used in minerals crushing where the ores are not too abrasive and they are also used in smaller scale production mining of more abrasive metal ores, such as gold. Coal is probably the largest user of roll crushers, currently, though. Coal plants will use roll crushers, either single roll or double roll, as primary crushers, reducing the ROM coal. Usually, these crushers will have teeth or raised forms on the face of the roll. (Roll crushers used for minerals and metal ores have smooth faced rolls.)

The particles are drawn into the gap between the rolls by their rotating motion and a friction angle formed between the rolls and the particle, called the nip angle. The two rolls force the particle between their rotating surface into the ever smaller gap area, and it fractures from the compressive forces presented by the rotating rolls. Some major advantages of roll crushers are they give a very fine product size distribution and they produce very little dust or fines. Rolls crushers are effectively used in minerals crushing where the ores are not too abrasive and they are also used in smaller scale production mining of more abrasive metal ores, such as gold. Coal is probably the largest user of roll crushers, currently, though. Coal plants will use roll crushers, either single roll or double roll, as primary crushers, reducing the ROM coal. Usually, these crushers will have teeth or raised forms on the face of the roll. (Roll crushers used for minerals and metal ores have smooth faced rolls.)

## rock crushing rule of thumb

Gyratory crusher: feed diameter 0.75 to 1.5m; reduction ratio 5:1 to 10:1, usually 8:1; capacity 140 to 1000 kg/s; Mohs hardness <9. More suitable for slabby feeds than jaw crusher. [reduction by compression].

## type of crushers and their difference - jxsc mining

A crusher is a machine that is designed to reduce large rocks into smaller rocks, gravel, or rock dust. Crushers may be used to reduce the size of materials, or change the form of waste materials so they can be more easily disposed of or recycled, or to reduce the size of a solid mix of raw materials so that pieces of different composition can be easy for next step separation.

As an old Chinese saying goes One must have good tools in order to do a good job. selecting an appropriate crusher, or indeed any parts of processing equipment, is very important in every quarry operation. And understanding what each crusher type is used for and knowing some general efficiency tips and the proper way to feed these machines will lead to the best results in your mining processing. Of course, each type of crusher is different and each of them is used to achieve a particular result. Likewise, to obtain a specific output, each type of crusher requires different maintenance tasks to keep it running efficiently. Operators who can achieve this, along with a consistent feed to the crusher, will be the most efficient and, more importantly, the most profitable.

Jaw crusher is used as primary crusher, its reduction ratio is usually 6:1. It uses compressive force to break the material, this mechanical pressure is achieved by the two jaws of the crusher. It is called a jaw crusher because it works the same was a human jaw does-food goes into your mouth and your bottom jaw pushes the food up against your fixed-top jaw. Inside the jaw crusher, is consisting of two vertical jaws installed to a V form, one jaw is kept stationary and is called a fixed jaw while the other jaw, called a swing jaw, moves back and forth relative to it, by a cam or pitman mechanism. where the top of the jaws are further away from each other than the bottom, so it can use a constantly moving metal piece that crushes the stones on a situated metal piece in small movements. Jaw crushers are classified on the basis of the position of the pivoting of the swing jaw

The type of jaw varies, which makes the different jaw crushers preferred for certain projects. For example, the Dodge crusher is used for laboratory purposes and not as heavy duty machinery because it can get clogged too easily, making it useless for large-scale projects.

In the Dodge type jaw crushers, the jaws are farther apart at the top than at the bottom, forming a tapered chute so that the material is crushed progressively smaller and smaller as it travels downward until it is small enough to escape from the bottom opening. The Dodge jaw crusher has a variable feed area and a fixed discharge area which leads to choking of the crusher and hence is used only for laboratory purposes and not for heavy-duty operations.

The jaw crusher is usually made of cast steel because it is such a heavy-duty machine. Its outer frame is generally made of cast iron or steel. While the jaws themselves are usually constructed from cast steel. They are fitted with replaceable liners which are made of manganese steel, or Ni-hard (a Ni-Cr alloyed cast iron). Usually, both jaws are covered with replaceable liners. Also in some types, the liners can be turned upside down after a while, extending the replacement time.

Similar to a jaw crusher, the gyratory crusher pulverizers the stones by placing them between two manganese steel plates and going straight down. It does not rotate, rather it is powered by electricity. Gyratory crushers are used in mine or ore processing plants and they can be used for primary or secondary crushing. It crushes rocks by rotating the vertical shaft and crushing the rocks in a circular motion where they fall out the narrow bottom when they are small enough.A gyratory crusher is used both for primary or secondary crushing.

Cone crusher is similar in operation to a gyratory crusher, but with less steepness in the crushing chamber and more of a parallel zone between crushing zones. A cone crusher breaks material by squeezing the material between an eccentrically gyrating spindle, which is covered by a wear resistant mantle, and the enclosing concave hopper, covered by a manganese concave or a bowl liner. As the material enters the top of the cone crusher, it becomes wedged and squeezed between the mantle and the bowl liner or concave. Large pieces of the material are broken once, and then fall to a lower position (because they are now smaller) where they are broken again. This process continues until the pieces are small enough to fall through the narrow opening at the bottom of the crusher.

A cone crusher is suitable for crushing a variety of mid-hard and above mid-hard materials. The feed is dropped to the crusher from the top and it is crushed between the crushing chamber and the slowly rotating cone.

Cone crushers are mostly used for the large scale crushing in the mining industry. It has the advantage of reliable construction, high productivity, easy adjustment and lower operational costs. The spring release system of a cone crusher acts as an overload protection that allows tramp to pass through the crushing chamber without damage to the crusher.

Impact crushers involve the use of impact rather than pressure to crush material. The material is contained within a cage, with openings on the bottom, end, or side of the desired size to allow pulverized material to escape. There are two types of impact crushers: horizontal shaft impactor and vertical shaft impactor. Impact crushers are suitable for materials that are soft or easily cleaving from the surface. The crusher consists of a fast spinning rotor and beaters attached to the rotor. The feed is entering to the crusher from the top and crushing starts immediately when the feed is impacted with beaters towards the crushers inner surface. Impact crusher can also be equipped with a bottom screen, which prevents material leaving the crusher until it is fine enough to pass through the screen. This type of crusher is usually used for soft and non abrasive materials.

Roll crushers crush the material use two opposite rotation of the rollers. The crushing is made up of electromotor, holder, fixed roller, movable roller and safety spring. The surface of the roller is mostly smooth. According to the number of rolls, there are single-roll, double-roll or multi-roll crushers. The double roll crusher is the most common rock stone crushing machine. Its crushing ratio is usually lower than in other crushers, so its suitable for fine crushing. The roll crusher uses compression to crush materials, and the reduction ratio is 2 to 2.5 so roller crushers are not recommended for abrasive materials.

Hammer crusher consists of a high-speed, usually horizontally shaft rotor turning inside a cylindrical casing. The crusher contains a certain amount of hammers that are pinned to the rotor disk and the hammers are swinging to the edges because of centrifugal force. The feed is dropped to the crusher from the top of the casing and it is crushed between the casing and the hammers. After crushing the material falls through from the opening at the bottom.

when selecting the correct crusher to best suit a particular operation, it is important to understand the requirements for each stage of crushing and how to properly feed each crusher. During the primary crushing stage, the aim is to get the material to a size that conveyors and other aggregate processing machines can handle. Generally, jaw crushers are installed at this crushing stage. Some operations will need further crushing in secondary and tertiary crushing stages. These stages are used to better control and size the output. Impact crushers and cone crushers tend to be used during these stages to better control particle size and shape. Understanding how to best match the type of crusher to the right crushing stage, as well as working with a manufacturer to properly size the crusher, will ensure crushing and feeding efficiency throughout an operation and, ultimately, overall profitability.

Mining Equipment Manufacturers, Our Main Products: Gold Trommel, Gold Wash Plant, Dense Media Separation System, CIP, CIL, Ball Mill, Trommel Scrubber, Shaker Table, Jig Concentrator, Spiral Separator, Slurry Pump, Trommel Screen.

## crushing ratio competition of different crushers - hxjq mining machine manufacturer

When it come to the field of crushing machine, we may be familiar with one phrase crushing ratio. So, what exactly does this mean? How to caculate this ratio? What is the mineral's largest size and how to measure it? Here we're going to make it more clear in detail. Crushing ratio refers to the average number of pieces the raw feed rock is reduced into. Usually, there are two kinds of crushing ratio, one is total crushing ratio, the other is gradual crushing ratio; the former one equals the multiplication of different gradual crushing ratio.

A crusher that breaks material by squeezing or compressing it between convex and concave shaped surfaces covered by manganese as the wear surface. Normally used as the second or third stage crusher. Uses compression to crush. The crushing ratio is 6-8 to 1.

The impact crusher operates much in the same method as a single impeller, with counter-rotating (two) impellers which not only impel the material against the breaker bars, but also impel material high inside the chamber to be fractured on other incoming feed. Uses impact to crush material. Crushing ratio is 20 to 1.

The vertical shaft impact crusher is a crusher whose main mechanism rotates around a vertical axis. The rock is fed into the crusher and impacted or thrown by a table/ anvil configuration or anvil ring, and is crushed by impact either by manganese wear plates or rock-on-rock strikes. Often used to make fines or manufactured sand. Uses impact to crush materials. Crushing ratio is 4-8 to 1.

The roll crusher is a crusher that breaks material by squeezing it between two revolving metal cylinders, with axes parallel to each other and separated by a space equal to the desired maximum size of the finished product. Uses compression to crush material. The crushing ratio is 2 to 2.5 to 1. There are also triple roll crushers able to handle larger feed sizes. They also produce fewer fines per pass than do cone type crushers. Roll crushers are good for producing road chips. Not recommended for abrasive rock, but very good crushing limestone.

A hammer crusher is a crusher that employs hammers or flails on a rapidly rotating axis. The hammers are usually made of manganese. Uses impact and attrition to crush material. The crushing ratio is 20 to 1.

These series products is character as high crushing ratio, uniform production, simple structure, reliable function, easy maintenance, economical working and so on. We use the superior to make the main part, especially the perishable parts. We connect the superior technology, the results from our test basis and the feedback of our clients to offer these products when the technology accord to our, clients and the standard of the mine industry.

We have a super staff, who can guarantee the punctual delivery. And we can meet the agent delivery requirements. We can guarantee that our cone crusher is broken naturally; we can take charge of replacement in one year. And we are responsible for the maintenance if there is something wrong with our crusher when it is working.

## crusher reduction ratio

Ihave mentioned the fact that, as the %of voids in the crushing chamber decreases, the production of fines by attrition increases. This is likesaying that, as the Crusher Reduction Ratio in any given crusher is increased, the %of fines in the product will increase, even though the discharge setting remains unchanged. Both of these statements are true, but the degree to which the product is affected depends to a much greater extent upon the ratio-of-volume-reduction in the crusher chamber than it does upon the actual degree of reduction performed on the material. For a given ratio-of-reduction, the type of crusher with a flared crushing chamber will usually deliver a cleaner product than any of the older types; conversely, more reduction can be performed in the machine without creating excessive fines.

The facts outlined in the foregoing paragraph have an important bearing on crushing plant design. Commercial crushing plant operators are usually desirous of making as few fines as possible, and this is becoming increasingly important as the demand for small grades of screened material increases. To hold down the amount of dust on screenings in the combined plant product, it is essential that the amount of reduction per crushing stage be held within conservative limits; moreover, it is important that the work in each stage be apportioned with due regard to the characteristics of the crushers comprising these stages.

As an example, suppose that it is required to make a reduction of 7:1 in two stages of crushers, one a standard gyratory and the other a fine-reduction crusher. We know from our examination of the crushing characteristics of these types that, for equal reduction ratios, the volume-reduction-ratio in the standard gyratory is considerably higher than it is in the fine reduction crusher. Therefore, if minimum production of fines is desirable, it is logical that the heavy end of the 7:1 reduction should be handled in the latter machine. Generally, for such a case, the split would be about 3:1 to the standard machine, and 4:1 to the fine reduction crusher.

## single roll crushers | mclanahan

The Single Roll Crusher, with its 6:1 ratio of reduction, is ideal for reducing large feed lumps to a medium product size while producing a considerably lower percentage of fines. The minimum product sizing of a Single Roll Crusher is generally limited to 2-3. The crushing is carried out between the full width of the extra-long curved crushing plate and the low-speed crushing roll. The curvature of the crushing plate provides an ample throat opening to capture large irregular feed lumps. The replaceable crushing plate tips or liners are slotted to intermesh with the roll teeth to produce a cubical product and effectively reduce slabbing.

Single Roll Crushers are V-belt driven and employ a large diameter flywheel with a gear and pinion set to reduce roll speed. With the assistance of the inertia generated by the flywheel, this crusher is operated with relatively low horsepower and requires lower headroom in comparison to other crushers used for primary reduction. The roll diameter and width of the crusher will ultimately be dictated by the feed size, product size and capacity.

Single Roll Crushers employ a tramp relief mechanism to allow momentary movement of the crushing plate so the uncrushable object can pass. The mechanism then allows the crusher to return to its original setting and remain in operation.

The Single Roll Crusher, which was originally patented by Samuel Calvin McLanahan in 1894, has evolved over the years to include design features to ensure many years of rugged operation. Complete with all safety guards, the Single Roll Crusher features an automatic tramp relief mechanism that allows the crushing plate to hinge open, pass non-crushable tramp material and return to the previous setting for continued operation.

Based on the application data and extensive field experience, McLanahan selects the proper duty class of Single Roll Crusher for each project. A fully-equipped application research laboratory allows for crushing tests to make sure McLanahan can provide the best possible solution.

A Single Roll Crusher is made up of a toothed roll assembly, which crushes the incoming feed material against a crushing plate. The Single Roll Crusher is designed to reduce larger feed sizes to the desired product size at a 6:1 ratio of reduction while producing a considerably lower percentage of fines. When properly fed in the direction of the roll rotation, the crushing action is carried out along the full width of the curved crushing plate, which ensures maximum throughput capacity. A properly sized roll diameter and tooth configuration grabs the incoming feed and pulls it into the crushing zone without hesitation. The crushing plate has reversible and easily replaceable crushing plate tips, which are designed to produce a cubical product while providing the producer with twice the wear life and simplified maintenance. Single Roll Crushers often require less horsepower and lower headroom in comparison to other crushers used in primary and secondary applications.

These units are designed to make crushing simpler and more effective. McLanahan Single Roll Crushers also feature hydraulic product size adjustment to perform relatively simple changes to the crusher setting if required.

When an uncrushable object, such as metal, roof bolts/timbers, etc., enters the crusher and the force necessary to crush this material is greater than the crushing forces of the crusher, the crusher allows the crushing plate to open and pass the tramp material. The crusher then returns to its previous setting and remains in operation.

Cobra Single Roll Crushers are the lightest duty in the McLanahan line of Single Roll Crushers. They are ideal for wet, sticky feeds and for processing materials such as clean coal, petroleum coke, sulfur, rosin, foundry cores, frozen agglomerates and other friable materials.

Rockmaster Single Roll Crushers are the heaviest-duty model in the McLanahan line of Single Roll Crushers. They are ideal for the most severe crushing applications and reduce extremely hard material and typical mine refuse.

Typically designed for primary crushing, McLanahan Single Roll Crushers efficiently crush material at a 6:1 crushing ratio. . They can continually withstand heavy-impact applications. Single Roll Crushers reduce large size particles in the feed to a medium size, while producing a low percentage of fines.

## roll crushers | mclanahan

Roll Crushers are designed to handle the primary, secondary and tertiary stage crushing of friable materials such as coal, salt, clay, bauxite, limestone and other minerals of similar characteristics in the mining, power generation and numerous other industries. Roll Crushers are one of the most widely used crushers in the mining industry and have numerous advantages, such as high capacity, low headroom, low horsepower, the ability to handle wet, sticky feeds and the generation of minimum fines while producing a cubical product.

The simplified design gives these units excellent reliability and requires very little maintenance. Roll Crushers are designed with built-in tramp relief that allows for the passing of uncrushable materials while continuing operation and returning to the initial product setting.

Since patenting the first Single Roll Crusher in 1894, McLanahan has become an expert and leader in the industry in the design and manufacture of single and two stage Roll Crushers. The selection process for each application is based on extensive equipment knowledge and a wealth of test data developed in our research lab or through on-site testing.

McLanahan offers belt-driven Roll Crushers in four designs: Single Roll, Double Roll, Triple Roll and Quad Roll Crushers, which provide a substantial return on investment by operating at low cost and maximizing yield by generating minimal fines. The rugged design, which incorporates a fabricated steel base frame lined with replaceable abrasion-resistant steel liners, stands up to the toughest mineral processing applications while providing safe and simple operation, including an automatic tramp relief system to allow uncrushable objects to pass while the crusher remains in operation. These crushers are also versatile, allowing for adjustments in roll speeds and gap settings to meet most any application requirement.

Whether the application requires a single-stage or two-stage crusher, the forces necessary to perform the crushing remain the same: a combination of impact, shear and compression. The impact force occurs as the material enters the crusher and is impacted by the rotating roll. Shear and compression forces occur as the feed material is pulled between the crushing plate and/or crushing rolls.

Depending on the feed size, material is fed into the crushing chamber and encounters a single or a pair of rotating rolls. If a two-stage reduction is required, either a Triple or Quad Roll configuration can be used. In this scenario, the top stage of the crusher performs the primary reduction either by crushing the material between the roll and crushing plate or between a pair of rolls. The material is then fed directly between the two bottom-stage rolls for additional processing.

If a single-stage reduction is required, then depending on the feed-to-product-size ratio of reduction, either a Single or Double Roll Crusher can be selected. Regardless of the crusher type selected, Roll Crushers allow for the material to fracture along naturally occurring cleavage lines, which helps with minimizing fines generation.

Yes, it will. When a wet, sticky feed is fed to a two-stage crusher, you run the risk of plugging the crusher between the top and bottom stages. If a wet, sticky feed is anticipated and the ratio of reduction requires two stages of crushing, it is recommended that two separate single stages be used.

A good rule of thumb is: Single Roll Crushers have a 6:1 ratio of reduction, Double Roll Crushers have a 4:1, Triple Roll Crushers have a 6:1 on the top stage and a 4:1 on the bottom stage, and Quad Roll Crushers have a 4:1 on both the top and bottom stage.

Single Roll Crushers are typically used as primary crushers that provide a crushing ratio of up to 6:1. They crush materials such as ROM coal, mine refuse, shale, slate, gypsum, bauxite, salt, soft shale, etc., while producing minimal fines. Designed with intermeshing roll teeth and a curved crushing plate, they are extremely effective in reducing slabby feeds.

Double Roll Crushers provide a 4:1 reduction ratio. They are typically used as a secondary or tertiary crusher for materials such as ROM coal with refuse, limestone, gypsum, trona, shale, bauxite, oil shale, clean coal, coke, salt, quicklime, burnt lime, glass, kaolin, brick, shale and wet, sticky feeds. Each machine is custom engineered with roll elements and tooth patterns selected depending on theapplication requirements to produce a cubical product with minimal fines.

Triple Roll Crushers are ideal for producers who want to accomplish two stages of reduction in one pass. They can be used in coal, salt, coke, glass, and trona operations, among others. Triple Roll Crushers combine a Single Roll Crusher with a Double Roll Crusher to form a crusher that is capable of achieving a 6:1 reduction ratio in the primary stage and a 4:1 reduction in the secondary stage while producing a cubicle product at high capacity.

Quad Roll Crushers are ideal for producers, including those with preparation plants, who want to accomplish two stages of reduction in one pass. They can be used in coal, salt, lime, pet coke and potash operations, among others. Quad Roll Crushers are capable of achieving a 4:1 reduction ratio before feeding the crushed material to the secondary stage for an additional 4:1 reduction to make the final product.

## roll crusher,double roll crusher,teeth roll crusher video - hxjq machinery

Roll crusher is a new product independently designed, researched and manufactured by Hongxing Machinery according to the structural principle of American crusher and is widely used in coal, metallurgy, mine, chemistry and building material industry. This series of crusher has the advantages of small size, big crushing ratio, low noise, simple structure, convenient maintenance and high productivity.

The material feeding granularity is very big and the material discharging granularity is adjustable, and it is able to crush materials with compression strength less than 160MPa. It is ideal for especially the coal industry because when using this machine to crush the raw coal, the coal can be directly crushed after deironing and decontaminating.

Toothed roll crusher is a type of roll crusher. The main difference compared with ordinary roll crusher is toothed roll crusher has shape teeth on its crushing rollers, which can crush materials very well. It is very suitable for crushing materials with medium or below medium hardness, such as lump coal.

Note: For product inquiry or order requirements, Please fill the following form, and we will contact you within one business day, and all your information is kept confidential and is not shared with any third parties.

## roll crusher - an overview | sciencedirect topics

Roll crushers are generally not used as primary crushers for hard ores. Even for softer ores, such as chalcocite and chalcopyrite, they have been used as secondary crushers. Choke feeding is not advisable as it tends to produce particles of irregular size. Both open and closed circuit crushing is employed. For close circuit the product is screened with a mesh size much less than the set.

Figure6.4 is a typical set-up where ores crushed in primary and secondary crushers are further reduced in size by a rough roll crusher in an open circuit followed by finer size reduction in a closed circuit by a roll crusher. Such circuits are chosen as the feed size to standard roll crushers normally does not exceed 50mm.

A distinct class of roll crushers is referred to as sizers. These are more heavily constructed units with slower rotation, and direct drive of the rolls rather than belt drives. They have a lower profile, allowing material to be easily fed by loaders, and are a good choice for portable crushers at the mine that reduce the coal in size for conveying to the preparation plant. An example of these units is shown in Fig.9.4.

9.4. (a) Primary sizer with attached feeder. The large motors and gearboxes drive the relatively low-speed toothed rolls that break the coal. (b) Haulage truck dumping coal directly into the feed hopper for a primary sizer, which discharges onto a product belt. (c) Tertiary sizer for crushing coal to the desired size for a preparation plant.

Their lower speeds are claimed to reduce fines generation, while lending themselves to high throughput applications. Sizers can either have the rolls rotate towards each other to carry feed between the rolls to be broken, or can be constructed as tertiary sizers with the rolls rotating away from each other. With tertiary sizers, feed coal is added between the rolls, and much of the fine material falls through. The coarser material is then carried to the outside to be broken against fixed sizing combs. This design increases the capacity by producing two main product streams instead of one, and also minimizes overcrushing by removing a large fraction of the fines. Tertiary sizer capacities range from 440 tons/h (400 metric tons/h) for 2448 inch (61122cm) rolls producing a 2-inch (5cm) product, up to 3968 tons/h (3600 metric tons/h) for 2096 inch (51244cm) rolls producing a 10-inch (25cm) product (Alderman and Edmiston, 2010).

A typical coal handling package using sizers would comprise a dump pocket discharging to a primary sizer discharging to a product belt, as shown in Fig.9.4b. This product belt would then feed a secondary or tertiary sizer, such as is shown in Fig.9.4c, which may include intermediate screening to remove product prior to subsequent stages of breakage. Typical size ranges would start with run-of-mine coal feeding to the primary sizer at 2000mm, and reducing to 350mm. The secondary sizer would receive this coal and discharge at a nominal 125mm, followed by a tertiary sizer/screen combination to generate a 50mm topsize preparation plant feed (FLSmidth, 2011).

The intermediate crushing in the cut roll crusher is mainly used for the crushing of brittle materials like concrete and clay sintered bricks, along with the compression of rough materials like wood and fabric (to avoid being too small in size) after the coarse (primary) crushing. The selective crushing in this process is good for the separation of impurities. Impact crushers are commonly applied in intermediate crushing. However, when used in crushing of mixed C&D waste, the wood and fabric materials will be broken and mixed in recycled aggregate materials by the high-speed operating rotors and are difficult to be separated.

Although not widely used in the minerals industry, roll crushers can be effective in handling friable, sticky, frozen, and less abrasive feeds, such as limestone, coal, chalk, gypsum, phosphate, and soft iron ores.

Roll crusher operation is fairly straightforward: the standard spring rolls consist of two horizontal cylinders that revolve toward each other (Figure 6.14(a)). The gap (closest distance between the rolls) is determined by shims which cause the spring-loaded roll to be held back from the fixed roll. Unlike jaw and gyratory crushers, where reduction is progressive by repeated nipping action as the material passes down to the discharge, the crushing process in rolls is one of single pressure.

Roll crushers are also manufactured with only one rotating cylinder (Figure 6.14(b)), which revolves toward a fixed plate. Other roll crushers use three, four, or six cylinders, although machines with more than two rolls are rare today. In some crushers the diameters and speeds of the rolls may differ. The rolls may be gear driven, but this limits the distance adjustment between the rolls. Modern rolls are driven by V-belts from separate motors.

The disadvantage of roll crushers is that, in order for reasonable reduction ratios to be achieved, very large rolls are required in relation to the size of the feed particles. They therefore have the highest capital cost of all crushers for a given throughput and reduction ratio.

The action of a roll crusher, compared to the other crushers, is amenable to a level of analysis. Consider a spherical particle of radius r, being crushed by a pair of rolls of radius R, the gap between the rolls being 2a (Figure 6.15). If is the coefficient of friction between the rolls and the particle, is the angle formed by the tangents to the roll surfaces at their points of contact with the particle (the angle of nip), and C is the compressive force exerted by the rolls acting from the roll centers through the particle center, then for a particle to be just gripped by the rolls, equating vertically, we derive:

The coefficient of friction between steel and most ore particles is in the range 0.20.3, so that the value of the angle of nip should never exceed about 30, or the particle will slip. It should also be noted that the value of the coefficient of friction decreases with speed, so that the speed of the rolls depends on the angle of nip, and the type of material being crushed. The larger the angle of nip (i.e., the coarser the feed), the slower the peripheral speed needs to be to allow the particle to be nipped. For smaller angles of nip (finer feeds), the roll speed can be increased, thereby increasing the capacity. Peripheral speeds vary between about 1ms1 for small rolls, up to about 15ms1 for the largest sizes of 1,800mm diameter upwards.

Equation 6.6 can be used to determine the maximum size of rock gripped in relation to roll diameter and the reduction ratio (r/a) required. Table 6.1 gives example values for 1,000mm roll diameter where the angle of nip should be less than 20 in order for the particles to be gripped (in most practical cases the angle of nip should not exceed about 25).

Unless very large diameter rolls are used, the angle of nip limits the reduction ratio of the crusher, and since reduction ratios greater than 4:1 are rare, a flowsheet may require coarse crushing rolls to be followed by fine rolls.

Smooth-surfaced rolls are usually used for fine crushing, whereas coarse crushing is often performed in rolls having corrugated surfaces, or with stub teeth arranged to present a chequered surface pattern. Sledging or slugger rolls have a series of intermeshing teeth, or slugs, protruding from the roll surfaces. These dig into the rock so that the action is a combination of compression and ripping, and large pieces in relation to the roll diameter can be handled. Toothed crushing rolls (Figure 6.16) are typically used for coarse crushing of soft or sticky iron ores, friable limestone or coal, where rolls of ca. 1m diameter are used to crush material of top size of ca. 400mm.

Wear on the roll surfaces is high and they often have a manganese steel tire, which can be replaced when worn. The feed must be spread uniformly over the whole width of the rolls in order to give even wear. One simple method is to use a flat feed belt of the same width as the rolls.

Since there is no provision for the swelling of broken ore in the crushing chamber, roll crushers must be starvation fed if they are to be prevented from choking. Although the floating roll should only yield to an uncrushable body, choked crushing causes so much pressure that the springs are continually activated during crushing, and some oversize escapes. Rolls should therefore be used in closed circuit with screens. Choked crushing also causes inter-particle comminution, which leads to the production of material finer than the gap of the crusher.

The objective of sample preparation is to prepare test samples from a parent sample or individual primary increments, Fig.5.19 for analysis. Sample preparation includes all procedures that a sample is subjected to in order to produce a reduced mass of sample (analysis sample) that is representative of the parent sample and from which subsamples of relatively small mass can be used directly for analysis. Samples for general analysis (proximate, ultimate, calorific value, total sulphur, etc.) are typically milled samples with 95% passing 0.212mm. Standard AS4264.1 stipulates that the minimum mass required for general analysis is 30g.

However, some laboratory analyses will require larger sample masses. Some examples from AS 4264.1 include Hardgrove grindability index (AS 1038.20) which requires 1kg at 4.75mm top size, and total moisture (AS 1038.1 Method A and B) 300g at 4mm. However, the principles of preparing a representative analysis sample from the original coal sample are the same.

Taking the ash determination as an example: 1g of coal is used in a single ash determination, and that 1g has to be representative of the coal sample. At a top size of 0.212mm the sampling constant, Ks, for most coals will be very small and this constant combined with a 1g mass of coal enables the variance contribution from the IH of the analysis sample to be almost insignificant and therefore a high level of precision can be expected.

Apart from exploration samples, most samples received by laboratories are from mechanical sampling systems at coal handling facilities at mine sites, ports or power stations. In some areas where coal is being sold across land boarders such as the MongolianChinese border, most samples will be extracted directly from haulage trucks. Many samples, such as ship loading samples and some coal preparation plant samples, are produced by multistage mechanical sampling systems. Other samples may be produced from single-stage samplers. As a result, laboratories can receive samples in a wide range of conditions, most importantly sample mass, moisture content and particle size distributions. Sample preparation procedures have to be tailored to suit the samples and the proposed testing and analyses procedures that the sample has been collected for.

In some instances the particle size reduction may be omitted before sample subdivision, for example at the first stage after collection of the primary increment. However, generally before subdivision (subsampling) the particle size should be reduced.

In each case at every stage, the process recognises the relationships between the number of increments, sample mass and particle size to sampling variance, as each stage is a standalone sampling exercise.

Hammers mills comprise a set of swinging hammers attached to a rotating shaft (Fig.5.22). Typically, they are fed a 4mm top size coal to produce analysis samples with >95% passing 0.212mm. They have a device for feeding the coal into the mill. This is often a screw-type feeder. They also usually have a screen on the outlet to ensure that the entire sample achieves a specific top size. Hammer mills tend to generate excessive fines and should not be used in some instances, such as preparation of samples for petrographic analysis and Hardgrove grindability index determination.

Ring mills comprise a cylindrical canister and lid, a steel ring, and a smaller steel cylinder that fits inside the canister (Fig.5.23). The coal is placed in the canister with the ring and the cylinder, and the lid is attached. This is then placed in a jig that moves the canister in a circular motion. The movement of the various metal components within the canister crushes the coal. There is some concern that these mills can become heated and that this may affect the coal quality, particularly CSN values. This type of mill is particularly useful for crushing low mass samples as sample loss is kept to a minimum. Automated ring mills have been in use in laboratories handling large sample volumes to ensure consistent milling and improved productivity.

Roll crushers are comprised of two steel cylinders (Fig.5.24). The coal is crushed as it passes between the cylinders. This type of crusher is useful when preparing samples with a minimum of fines generation.

Incremental division is a manual method of subdivision that can provide precise subsamples. This method requires that the coal is well mixed prior to division. The coal is spread onto a flat surface in the form of a rectangle in a thickness approximately three times the nominal top size of the sample. A grid pattern is marked out on the sample (usually composed of at least 20 rectangles in a 54 grid) and a single increment is obtained from each square. The increment is removed from the sample using a suitable scoop and bump plate to prevent the increment from falling out of the scoop. Incremental division is used almost exclusively in obtaining the final (0.212mm) laboratory sample after the hammer mill operation, because of excessive dust losses by other methods.

Rotary sample division (rsd) is the most common method for subdivision of large samples in coal laboratories. The rotary sample divider (Fig.5.25) comprises a feed hopper, a device for feeding the coal at a constant rate (usually a vibratory feeder) and a number of sector-shaped canisters formed into a cylinder on a rotating platform. The uniform coal stream produces a falling stream of coal that is collected in the rotating canisters, dividing the sample into representative parts.

As the coal particles move through the feed hopper there is a high potential that some segregation and grouping will occur. To counter the effect that this may having on sample preparation variance it is advisable to ensure that each canister cuts the falling stream at least 20 times, i.e. there are at least twenty rotations of the turntable as the coal flows into the canisters. Additionally, it is a good practice to combine material collected in two or more canisters to form the divided increment or subsample. When doing so, canisters that are opposite each other in the rotary sample divider should be selected for recombination. The machine pictured in Fig.5.25 is set to divide a sample into eight divisions. If the requirement was to extract a quarter of the sample for analysis, two of the 1/8th divisions would be recombined.

Riffles (Fig.5.26) are less regularly used in laboratories. Riffles divide the coal into halves by allowing the coal to fall through a set of parallel slots of uniform width. Adjacent slots feed opposite containers. The width of the slots should be at least three times the nominal top size of the coal. There should be at least eight slots for each half of the riffle.

Fractional shovelling may be used for subsampling when a large rotary sample divider is not available. In this process, the coal is formed into a conical heap. Successive shovels of coal are removed from the base of the heap and are placed into daughter heaps. The shovels of coal should be allocated consecutively and systematically to each daughter heap.

Shredding rubber waste reduces the volume of used tires. Generally, the cost of shredding increases with the need to obtain pieces as small as possible. For grinding, rubber wastes are initially processed through mechanical cutters, roll crushers and screw shredders. To obtain finer particles, shear crushers and granulators are used. The final processing of rubber wastes is with high-temperature shredding equipment, such as rotary shredders, where degradation occurs during compression simultaneously with shear and wear (Mikulionok, 2015). In the initial phase, shredding rubber wastes results in dimensions of approximately 7.6210.16cm. These pieces are then placed in cutters that reduce the size to 0.630.63cm (Rafique, 2012).

Granulators are used in the second step of the recycling process, where pieces of waste tyres are grinded in the large-sized granulators to produce a large quantity of granules. The use of pulverises can reduce the rubber granulated material into fine powder. The rubber particles size can range from a few micrometres up to centimetres.

Rotary Breakers (Fig. 1). The rotary breaker serves two functionsnamely, reduction in top size of ROM and rejection of oversize rock. It is an autogenous size-reduction device in which the feed material acts as crushing media.

Roll Crusher. For a given reduction ratio, single-roll crushers are capable of reducing ROM material to a product with a top size in the range of 20018mm in a single pass, depending upon the top size of the feed coal. Double-roll crushers consist of two rolls that rotate in opposite directions. Normally, one roll is fixed while the other roll is movable against spring pressure. This permits the passage of tramp material without damage to the unit. The drive units are normally equipped with shear pins for overload protection.

Process is designed to reduce the size of large pieces with minimum production of dust. Two main types of breakers are used in Great Britain, viz. (a) Pick Breaker and (b) Bradford Breaker. Other crushers commonly used are jaw crushers, roll crushers, disc crushers, cone crushers and hammer crushers.

Pick breakerdesigned to imitate the action of miners' picks. Strong pick blades are mounted rigidly on a solid steel frame moving slowly up and down. Coal passes under the picks on a slowly moving horizontal plate conveyor belt. The amount of breakage is roughly controlled by the height to which picks are raisedupper limit is 0.5 m Typical performances: 450 ton/hr with a 2-m-wide machine. Size reduction from 500 mm to 300 mm. Several machines may be placed in series, with screens in between to remove fines. Main advantageminimum production of fines can be achieved. Fines production is controlled by the diameter and spacing of picks. Reduction in diameter and increase in spacing, decrease the proportion of fines.

Bradford breakerScreens break and removes large pieces of accidental material, e.g. pit props, chains or tramp iron, in one operation. Consists essentially of a massive cylindrical screen or Trommel, with fins fitted longitudinally inside the screen. These raise the lumps of coal as the cylinder rotates, until they fall, break, and are screened. Unbroken material passes out of the end of the cylinder. Production of fines is also small. Capacity of machine: up to 600 ton/hr.

Blake jaw crusher. Consists of a heavy corrugated crushing plate, mounted vertically in a hollow rectangular frame. A similar moving plate (moving jaw) is attached at a suitable angle to a swinging lever, arranged so that the reciprocating movement opens and closes the gap between the plates, the greater movement being at the top. The machine is available with top opening up to 2 2.7 m. Usual capacity up to 300 ton/hr. Horsepower required: up to 150.

Corrugated and toothed roll crushers. Two heavily toothed, or corrugated, cylindrical rollers (Fig. 10.1) are mounted horizontally and revolve in opposite directions. (Towards each other at the top side or nip, one being spring loaded.) Alternatively, a single roll may revolve against a breaker plate. Capacity of a 1.5 m-long machine with a 300 mm opening and roll speed 40 r.p.m. is about 350 ton/hr, with a power consumption of about 200 h.p. Best results are obtained by the use of several rolls in series, with screens between.

Run-of-mine coal produced by mechanized mining operations contains particles as small as fine powder and as large as several hundred millimeters. Particles too large to pass into the plant are crushed to an appropriate upper size or rejected where insufficient recoverable coal is present in the coarse size fractions. Rotary breakers, jaw crushers, roll crushers, or sizers are used to achieve particle size reduction. Crushing may also improve the cleanability of the coal by liberating impurities locked within composite particles (called middlings) containing both organic and inorganic matter. The crushed material is then segregated into groups having well-defined maximum and minimum sizes. The sizing is achieved using various types of equipment including screens, sieves, and classifying cyclones. Screens are typically employed for sizing coarser particles, while various combinations of fine coal sieves and classifying cyclones are used for sizing finer particles. Figure 2 shows the typical sizes of particles that can be produced by common types of industrial sizing equipment.

The sponge masses as produced by vacuum distillation have to be prepared before melting. The nine ton mass of sponge has to be crushed to about 12mm size pieces. The sponge in contact with retort wall and the push plates have a high likelihood of contamination with iron and nickel since these metals are soluble in titanium. The top of the mass may also have some contamination of iron and nickel from reaction with the radiation shield and substoichiometeric chlorides. To remove this contamination the outer skin of the sponge mass is removed by use of powered chisels. This material is downgraded from aerospace use and used in less critical applications. The sponge mass then is sliced radially to one to 5cm sections with a large guillotine or similar blade. The bottom section of the mass is removed first as this likely has the most amount of iron incorporated into the sponge. The sponge mass is removed from the working table, so this material can be segregated from the balance of the mass. At this point the mass is placed back on the table, sliced and then sent to a crushing circuit. Titanium sponge is malleable material, thus traditional mineral processing equipment such as roll or jaw crushers are not as effective as high shear shredding machines such as rotary shears or single rotor/anvil shears in preparing sponge with limited very fine particle generation.

Dust generation in the crushing process is a very important aspect of operation. Control of the dust by collection and washing of equipment on a periodic basis is very important to reduce the risks of fire in the processing of sponge. Care has to be taken to avoid working on equipment when dust present as titanium metal fires are difficult to extinguish; a class D extinguisher or rock salt are used to suppress the first. The high temperature of the fire and the low melting point of iron-titanium eutectic can result in melting of equipment, supports or piping in these plants if a fire does occur.

The core of the sponge mass has the lowest level of metal contamination. To harvest the material for applications that need low iron and low nickel levels, it is necessary to core the mass. This is done in several ways; the mass can be upended and the guillotine blade can be used to remove thick layers of outer skin, or chisels can be used to remove the outer layers. Control of the lot by separation during the crushing campaign is used to separate the high-purity products from the normal grades of sponge. Control of the nickel level in the magnesium used in the reduction is also important. Removal of as much stainless steel in piping, retorts and metal reservoirs is also important, as nickel in the magnesium will be incorporated into the sponge. Small concentrations of nickel in magnesium can take a long time to be purged from the process. Control of the quality of magnesium used for make up in the VDP process is as important, as some magnesium can be contaminated with nickel during production. Iron is not as significant an issue as its solubility in magnesium is low.

Related Equipments