shaking table ikea

development of the shaking table and array system technology in china

development of the shaking table and array system technology in china

Chun-hua Gao, Xiao-bo Yuan, "Development of the Shaking Table and Array System Technology in China", Advances in Civil Engineering, vol. 2019, Article ID 8167684, 10 pages, 2019. https://doi.org/10.1155/2019/8167684

Shaking table is important experimental equipment to carry out antiseismic research. Research, conclusion, comparison, and analysis concerning the developmental history, constructional situation, performance index, control algorithm, and experimental technique of the internal shaking table were reviewed and compared. Such functional parameters as internal shaking tables table-board size, bearing capacity, working frequency, and maximum acceleration were given. Shaking tables constructional status quo and developmental trend were concluded. The advantages and disadvantages of different control algorithms were contrastively analyzed. Typical shaking table test, array system tests, and experimental simulation materials were induced and contrasted. Internal existing shaking table and array system tests structural type, reduced scale, and model-material selection were provided. Analysis and exposition about the developmental tendency of shaking tables enlargement, multiple shaking tables array, full digitalization, and network control were made. The developmental direction, comparison of technical features, and relevant research status quo of shaking table with high-performance were offered. The result can be reference for domestic or overseas shaking tables design and type selection, control technique, and research on experimental technique.

At present, the structural seismic research methods include the pseudostatic test, pseudodynamic test, and shaking table test. The test method of the shaking table test can recreate the structural response and seismic oscillation in the lab accurately and reproduce the whole process of seismic oscillation effect or artificial effect in real time. The development of shaking table provides an accurate and effective way to study structural elastic-plastic seismic response [13].

Japan and the United States are the first two countries to establish shaking tables in the world. And, China initially built a shaking table in 1960 [1] when Institute of Engineering Mechanics, Chinese Academy of Sciences, built one-way horizontal vibration [47] with a specimen size of 12m3.3m. So far in China, there are a lot of shaking tables [1]; some were made in China, some were systematically remodeled from imported parts, and some were totally imported. In recent years, many scholars [8, 9] and Wang et al. [2] conducted abundant research on the development and control technology of Chinas shaking tables and also got some research achievements. However, such results are mostly summaries of the test technologies or control technologies of shaking table [10], while there are few summaries concerning the construction history and usage of domestic shaking tables. This paper makes a comprehensive summary of the development and application of domestic shaking tables and array test technologies in terms of the development, control technology, test application, and development trend of shaking table and array system based on current collected information, so as to provide some reference and basis for the construction and development of domestic shaking table.

The development of shaking table in China came relatively late [1, 3, 1114]. It can be roughly divided into four stages. In 1960s, the mechanical shaking table was the main stream with a working frequency of 1Hz40Hz, of which the characteristics of the specimens in low segment are difficult to be controlled [2, 10, 11]. Electrohydraulic shaking table was then rapidly developed with its high frequency. In 1966, departments of machinery and electronics collaborated with each other to build Chinas first exclusive shaking table for national system of defense in three years [2, 10, 13]. Thereafter, many domestic colleges and universities as well as scientific research institutes also begun to conduct researches. For example, Tongji University brought in the 4m4m two-horizontal dimensional identically dynamic electrohydraulic shaking table developed by American MTS, which has been transformed into three- to six-degree-of-freedom identically dynamic shaking table [1]. At the beginning of the 70s, the research on shaking table in China was continuously carried out and quickly developed. Our country also started to develop one-way electrohydraulic servo shaking table but rarely hooked into multiaxis shaking table [1520]. And, foreign shaking tables were introduced only when the test was demanding, so the introduction quantity of shaking tables was sharply decreased. Domestic institutes that conduct researches on shaking table mainly include China Academy of Building Research, Xian Jiaotong University, HIT (Harbin Institute of Technology), Institute of Engineering Mechanics, and Tianshui Hongshan Testing Machine Co., Ltd. [21, 22]. The shaking table construction situation in China is shown in Table 1.

The work frequency of electrohydraulic shaking table in the early stage of our country was about 50Hz. At present, at home and abroad, the work frequency of high-thrust shaking table with over 50t can reach more than 1000Hz. For instance, the work frequency of Y2T.10c shaking table developed by 303 Research Institute of China Aviation Industry Corporation is as high as 1000Hz, and the wide band random vibration control precision is 2.0dB [23] within the frequency range of 20Hz1000Hz.

In 2006, Beijing University of Technology built a nine-sub-building block array system with a size of 1m1m, which along with the original 3m3m single-array system composed the 10-subarray system, which can be used to constitute testing systems with any several subarray systems and many optional positions; at the end of 2006, Institute of Electro-Hydraulic Servo Simulation and Test System of Harbin Institute of Technology (HIT) developed successfully the first domestic multiaxis independent intellectual property rights (the hydraulic vibration test system with shaking table system is shown in Figure 1) and got identification, which changed the history of depending on importing shaking tables [24]. In 2012, Jiangsu Suzhou Dongling Vibration Test Instrument Co., Ltd. successfully developed the worlds largest single electromagnetic shaking table test system (http://www.cnki.net/kcms/detail/11.2068.TU.20130124.1608.001.html) with a thrust of 50 tons.

With the 9-subarray system of Beijing University of Technology as an example, this paper introduces the construction situation of shaking table array system. In 2003, The State University of New York built the first set of two-subarray systems. In the same year, the University of Nevada-Reno built the three-subarray system with three movable two-direction shaking tables. The size of the table and the maximum bearing capacity of the shaking table are introduced. The array system (shown in Figure 3) is suitable for experimental research on spindly space structure.

In 2004, Chongqing Jiaotong Institute of our country completed the constitution of the two-subarray system with a specimen size of 6m3m, of which one is fixed and the other is movable (shown in Figure 4). And, in 2008, National Key Laboratory of Bridge Dynamics was established.

In 2011, Beijing University of Technology began to prepare to construct nine-subarray system (shown in Figure 5) and has built 12 sets of actuator building block array systems till 2006, which was increased to 16 sets in 2009 and is now the array system with the largest number of single-array system in the world. Each single shaking table is composed by mesa, 5 connecting rods, a vibrator, and a base. The array system can be made into various combinations by 16 sets of vibrators and connecting rods to conduct varied shaking table array tests with different layouts and forms. The performance indicators of nine-subarray system are shown in Table 2. The system uses four piston pumps to offer oil. The rated oil supply pressure of the seismic simulated shaking table system is the same as the maximum oil supply pressure. In addition to 4 oil pumps, the system also has energy storage to supplement the oil supply when the oil supply of the oil supply pump is insufficient.

There are two main types of traditional shaking table control technology: one is PID control based on displacement control and the other is three-parameter feedback control (also known as the three-state feedback control) synthesized by the displacement, velocity, and acceleration [25]. It is essential for feedback theory to adjust the system after making the right measurement and comparison. In 1950, the PID control method mainly composed of unit P proportion, integral unit I, and differential unit D was developed. The traditional PID control method is simple in control algorithm, good in stability, and high in reliability and thus has been widely applied in the practical engineering. The PID control method is especially suitable for deterministic control system. Yet, as the target signal of shaking table is acceleration signal, high-frequency control performance is poorer when the displacement PID control is adopted, while the mesa cannot be located if acceleration PID is used. Meanwhile, in the process of control, nonlinear behavior exists in every specimen; thus, the effect of traditional PID control is not ideal due to the large waveform distortion [24, 2629]. As the structure sets higher requirement for control accuracy, three-parameter feedback control synthesized by the displacement, velocity, and acceleration was put forward in 1970s (the control principle is shown in Figure 6), which makes up for the narrow frequency band and the inability to realize acceleration control of single displacement control. Acceleration feedback can improve the system damping, and velocity feedback can improve the oil column resonance frequency. Adopting the displacement to control low frequency, speed to control midfrequency, and acceleration to control high frequency plays an important role in improving the dynamic behavior and bandwidth of the system. The introduction of three-parameter control technology greatly improved the playback accuracy of seismic time history, but due to the complexity of transfer function in the system, the correlation of input and output waveform is still not high. Power spectrum emersion control algorithm modifies drive spectrum utilizing system impedance and the deviation of the reference spectrum and the control spectrum, so as to get a relative high consistency of response spectrum and reference spectrum of the system [30, 31]. Power spectrum retrieval principle diagram is shown in Figure 7. This method belongs to the nonparametric method, which has nothing to do with any model parameters. But the matching degree of estimated power spectral density and real power spectral density is very low, so it is an estimation method with low resolution.

Another kind of the parametric estimation method, using the parameterized model, can give a much higher frequency resolution than period gram methods. The power spectrum control method based on the parameter model has high resolution and can improve the system control convergence speed and power spectrum estimation precision, yet it is sensitive to noise with higher computation requirements. Therefore, in the vibration test control, it has not reached practical stage [32].

The traditional control algorithm is based on the linear model of vibration table and specimen [33], and the parameters in the process of test are assumed unchanged, but the actual test object is very complex. The components experience elastic-plastic phase and then the failure stage in the process of the test, and the parameters that were assumed to be unchanged turn out to have been changed in the process of test. The change of the parameters influences the accuracy of the input seismic signal, which is the biggest defect in the traditional control technology. From the 1970s to 80s, intelligent control is a new theory and technology with strong control ability and great fault tolerance. The introduction of the adaptive control improved the robustness and control precision of the system, such as adaptive harmonic control theory (AHC), adaptive inverse function control theory (AIC), and the minimum control algorithm (MCS) [34]. At present, the fuzzy control algorithm of the structure control attracted the attention of more and more scholars with its advantages of powerful knowledge expression ability, simple operational method, and the adoption of fuzzy language to describe the dynamic characteristics of the system. As early as 1996, some scholars abroad has carried out the induction and comparison of structural seismic control methods and summarized the advantages and disadvantages of various control methods, particularly expounding that the fuzzy control and neural network control algorithm could better solve the problem of nonlinear. The application of domestic intelligent control algorithm in the engineering structure control is relatively late. In 2000, Ou [29] and other scholars proposed the control algorithm which can realize fuzzy control according to the control rules and fuzzy subset, which greatly improved the practicability and efficiency of fuzzy control algorithm.

Most of the fuzzy control rules are established based on experience, leading to great difficulty in structure control. In view of this, Wang and Ou [35], in 2001, put forward the method of extraction, optimization, and generation of fuzzy control rules with the basis of structural vibration fuzzy modeling and genetic algorithm. Qu and Qiu [36] came up with a kind of active feed forward control method based on adaptive fuzzy logic system method, which better solved the nonlinear control problems of reference signal and external interference in the feedforward control. Wang [30] for flexible structure completed the application of the fuzzy PID control method in the structural vibration and conducted the active control experimental verification of beam vibration.

The efficiency of fuzzy control depends on the selection of function parameters and the establishment of the fuzzy control rules. Therefore, the adaptive fuzzy control is of great research significance for the nonlinear structure system. Because of the functions of self-adaptation and self-study of artificial neural network, the application of neural network in seismic control in civil engineering began in the 60s, which adopts a simple neural network controller to control the movement of the inverted pendulum, and achieved good effect. In 2003, Mo and Sun [31] implemented numerical simulation of active vibration control on the beam vibration control model by using genetic algorithm with the minimum energy storage structure as the goal, compared with the exhaustive method, and achieved good control effect. Chen and Gu [37] carried out simulation research on the application of frequency adaptive control algorithm based on the least square method in the domain of vibration control, and the simulation got the damping effect of about 50db. Li and Mao [38] achieved evolutionary adaptive filtering algorithm with strong instantaneity and applied it into the vibration control of structures to conduct simulation calculation based on genetic algorithm and moving least mean square algorithm of transient step, and the simulation obtained the damping effect of about 30db.

To solve the limit bearing capacity of shaking table for large structure test, scholars from all over the world conducted a wide variety of researches. The combination of substructure technique and shaking table test is an effective way to solve this problem [39]. Hybrid vibration test divides the structure into test substructure and numerical substructure. Test substructure is the complex part in experiment on shaking table, while numerical substructure is the simple part to carry out numerically simulation. Test substructure can carry out full-scale or large-scale model test, avoiding the influence of the size limit of shaking table with large-scale structure, and thus was widely used in the study of the engineering seismic test. The domestic researchers Chen and Bai [33] implemented preliminary exploration into structural seismic hybrid test technique on account of the condensation technology. In 2008, Chen and Bai [33] also embarked on the hybrid vibration test on the hybrid structural system of commercial and residential buildings, of which the bottom commercial district was put into a full-scale experiment on shaking table and other parts were involved in numerical simulation.

In 2007, Mr. Wu Bin from Harbin Institute of Technology applied the center difference method into the change of the acceleration calculation formula in hybrid real-time test which takes consideration of the quality of test substructure and analyzed the stability of the algorithm. The test results show that the stability of the center difference method in real-time substructure application is poorer than that of the standardized center difference method. Such scholars as Yang [40] in the same year made the numerical simulation analysis on the shaking test substructure test, and the analysis results show that the integral step change is sensitive to the influence of experimental stability. At the same time, he verified the validity of the theoretical research results.

In recent years, the structural styles of shaking table test research were developed from masonry structure, frame structure, tube structure to bridge structure, structures with the consideration of some isolation and damping measures, and structural foundation interaction experiment. The application of shaking table tests on the structure seismic resistance made it possible to establish structure nonlinear model with various structural styles [2]. Many shaking table tests have been carried out in recent years in China, which, according to the testing purpose, can be roughly divided into three categories: the first type is to determine structural earthquake-resistance performance as the test purpose; the second type is to determine the dynamic characteristics of structure, obtain such dynamic parameters as the natural vibration period and damping of structure, seek for weak parts of the structure damage, and provide the basis for super high-rise and supergage designs; the third type is to verify the applicability of certain measure or design theory in the structure. This paper drew a conclusion of typical shaking table tests in recent years in terms of building types, model dimensions, and so on (shown in Table 3).

Shaking table experiment diversifies the structural styles in experiment, makes it possible to establish the nonlinear damage model, and provides a reliable basis for all kinds of structures to establish the corresponding destruction specification. But large span structure tests on bridges, pipes, aqueduct, transmission lines, and so on may produce traveling wave effect under the action of earthquake due to large span, and a single shaking table will not be able to simulate the real response of the whole structure under seismic action. Array system can better solve these problems. For example, the State University of New York-Buffalo did damper damping effect research on Greek Antiliweng Bridge using 2-subarray system; conducted shaking table array test research on two continuous steel plate girder bridge and concrete girder bridge by using the 3-subarray system of University of Nevada. Many domestic scholars also carried out shaking table array test research on different structures of array systems. For instance, in 2008, Gao Wenjun made shaking table array test research of organic glass model on Chongqing Chaotianmen Bridge with the 2-subarray system of Chongqing Traffic Academy; conducted a multipoint shaking table array test research on concrete-filled steel tubes arch bridge with the 9-subarray system in Beijing University of Technology.

According to the size of mesa, shaking tables can be divided into large, medium, and small ones; in general, specimen size less than 2m2m for the small, 6m6m for the medium, and over 10m10m for the large. Due to the size limitation of a small seismic simulation vibration table, it can only do small-scale tests, and there is a certain gap with the prototype test. In the seismic simulation vibration table test of scale model, all parameters are required to meet the similarity principle, but it is difficult to do in practical engineering. For some important structures, especially the important parts of large structures, to accurately reflect the dynamic characteristics of the structure, within the permitted scope of the condition of capital, it is necessary to increase the specimen size and the maximum load as much as possible to eliminate the size effect of the model, so the large full-scale test must be the development trend of shaking table. China Academy of Building Research developed a shaking table with a mesa dimension of 6.1m6.1m and the maximum model load of 80t.

Due to the great investment, high maintenance cost, and test fees as well as long production cycle of large-scale shaking table, infinite increase in size of shaking table is obviously unreasonable, and likewise, it is not possible to fully meet the actual requirements only by increasing the size of shaking table. For large-span structure tests on bridges, pipes, aqueduct, transmission line, and so on array systems composed of many sets of small shaking table can be adopted. Shaking table array can either conduct a single test or make seismic resistance test on the structure of large-scale, multidimensional, multipoint ground motion input with varied combinations according to various needs. Therefore, the array system composed of many sets of small shaking tables must be the development trend of shaking table.

In terms of control mode, power spectral density control was mostly adopted before 1975. After 1975, Huang Haohua and other scholars used the time-history playback control to finish the seismic wave control research in a broad band. In the mid-1990s, digital control and analog control are widely used in the shaking table control, of which digital control is mainly applied in the system signal and compensation and the analog control is the basis for the control, whose control mode is complicated in operation with too much manual adjustment. After 1990s, Fang Zhong and other scholars developed a full digital control technology which has been widely used in the hydraulic servo control system with the rapid development of digital technology. Other than the valve control device and feedback sensor which adopt analog circuits, the rest utilize digital software to fulfill implementation. This control method can make up for some flaws in the analog control with simple test operation, being able to improve the accuracy, reliability, and stability of the system. Full digital control is the inevitable development trend of hydraulic servo system control.

With the appearance of slender and shaped structures and the application of new materials in building engineering, the seismic test methods of structures are put forward with higher and higher requirements. To meet the requirements of actual engineering and seismic research, scholars from all over the world are active in exploration and attempt and put forward some new testing methods. In recent years, countries around the world greatly invest in seismic research. From 2000 to 2004, the United States Science Foundation Committee spent eighty million dollars of research funding on the NEES plan; Europe established a collaborative research system European Network to Reduce Earthquake Risk (ENSRM); South Korea established a virtual structure laboratory using grid technology, which includes the wind tunnel, the shaking table, and other scientific research equipment. Furthermore, Internet ISEE Earthquake Engineering Simulation System in Taiwan of China was the earthquake engineering research platform developed by National Earthquake Engineering Research Center of Taiwan, China, with the Internet. The platform not only allows several laboratories to interconnect each other to implement large-scale shaking table test but also permits different laboratory researchers around the world to observe the test simultaneously and synchronously.

In China, Hunan University firstly put forward the structure network synergy test research and cooperated with Vision Technology Co., Ltd in 2000 to develop the network structure laboratory (NetSLab is shown in Figure 8). The main module and interface are shown in Figure 8. Thereafter, Hunan University cooperated with Harbin Institute of Technology to accomplish secondary development to establish the network collaborative hybrid test system and conducted a structure remote collaborative test along with Tsinghua University, Harbin Institute of Technology. Three domestic universities firstly completed remote collaboration pseudodynamic test, which is shown in Figure 9.

This paper drew a conclusion of the construction, history, and status quo as well as application and research of shaking table and array. The main conclusions are as follows:(i)On account of factors of actual application demand and economy, the size of the shaking table is between 1m and Xm, among which 3m6m are the majority. For large span structures such as bridges and pipes many sets of small array mode of vibration table can be used.(ii)Shaking table mesa acceleration and speed are about and 80cm/s, respectively. Through statistics, the remarkable frequency of previous ground motion records is mainly within 0.1Hz30Hz, and the frequency range of medium shaking table should be in 0Hz50Hz according to the requirements of the similar rule. Moreover, tests with special requirements need to be above 100Hz.(iii)With the appearance of slender and shaped structures and the application of new materials in building engineering, the seismic test methods of structures are put forward with higher and higher requirements.

The authors acknowledge the support from the Science and Technology Breakthrough Project of the Science and Technology Department of Henan Province ( 9), the Key Scientific Research Projects in He Nan Province (No. 18B560009), and Nanhu Scholars Program for Young Scholars of XYNU in China. The authors thank Xin Yang Normal University School of Architecture and Civil Engineering Laboratory and would also like to thank teachers and students of the team for collecting data.

Copyright 2019 Chun-hua Gao and Xiao-bo Yuan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

shaking table | gravity separator - mineral processing

shaking table | gravity separator - mineral processing

Shaking tables are one of the oldest gravity separators in the mineral processing industry, capable of handling minerals and coal of 0-2mm.Shaking tables are rectangular-shaped tables with riffled decks across which a film of water flows. The mechanical drive imparts motion along the long axis of the table, perpendicular to the flow of the water. The water carries the particles of the feed in slurry across the riffles in a fluid film. This causes the fine, high density particles to fall into beds behind the riffles as the coarse, low-density particles are carried in the quickly-moving film. The action of the table is such that particles move with the bed towards the discharge end until the end of the table stroke, at which point the table rapidly moves backwards and the particles momentum propels them still forward.

The capacity of the shaking table is about 0.5 t/h. 1.5-2TPH depending on the particle size of the process. In chromite processing and dressing industry, it is usually dozens of shaking table series or parallel installation to deal with excess tons. Therefore, the required installation space, equipment control difficulties due to the increased number of installations and the need for more automated processes have brought new challenges to the process design.

1. Big channel frame, very strong steel base structure( other companies use small channel frame)2. Polypropylene materials feeding chute and collection chute.(other companies dont have )3. Heighten steel stand,making it more convenient when feeding materials.4. Add cover for belt wheel5. Use top quality fiberglass deck,more wear-resisting6. Has various grooves on the table for your choice. We will recommend the best grooves to you according to your gold size.

create this gold & marble side table with this easy ikea hack! melanie lissack interiors

create this gold & marble side table with this easy ikea hack! melanie lissack interiors

As daft as it sounds, I'd recently brought a new vase that would look perfect in one corner of my living room, but I needed to buy a table to stand the new vase on! I've got some gold and glass side tables in the room which I love, but they are all being used for other purposes (climbing frames and rubbish disposal points mainly, but lets leave that gripe there..) I needed a table that matched the existing side tables, but looking at brass side tables online I wasn't prepared to part with 60+ to display a 12.50 fake cactus vase.

Sometimes when you need an inexpensive bit of basic furniture there is only one thing for it - Ikea. I searched Ikea's website for a glass topped table and came across the VITTSJO laptop table. This table was perfect as aswell as having a glass top, it has a metal frame which is best for spray painting (and it was only 20 quid!)

I'm obsessed with gold and marble together, I think it is just a winning combination. I decided to hack this VITTSJO table with gold spray paint and marble-effect contact paper, which would look so much more desirable than the basic black & glass table it comes as.

The first task was to build the VITTSJO, minus the glass top. Honest to God this was definitely the easiest piece of Ikea furniture I've ever assembled. The instructions didn't even fill up one side of A4! You basically just stick in a few screws.

Once built, take the frame outside and spray paint it. I used PlastiKote in gold 'brilliant metallic', which I consider to be the best spray paint brand out there. Stand the table upside down first and do 2-3 thin, light coats, around 30 minutes apart. Keep shaking the can throughout (shake for a few seconds, then spray for a few seconds and repeat) as this will give you the best overall colour coverage. Turn the table the right way up for the final coat.

Between applying coats of paint, I got out the left over d-c-Fix marble-effect contact paper I had left over from upcycling my drinks trolley, took the glass top from the Ikea table and drew around it twice:

I then took a piece of card (you can use the cardboard the table came from Ikea in) and cut out the glass shape also, so I had 2 pieces of contact paper and a piece of card the same size as the glass table top.

wood - wobbly desk with ikea tabletop and ikea legs - home improvement stack exchange

wood - wobbly desk with ikea tabletop and ikea legs - home improvement stack exchange

Stack Exchange network consists of 177 Q&A communities including Stack Overflow, the largest, most trusted online community for developers to learn, share their knowledge, and build their careers.

I seem to have an issue with the table top and legs I have purchased from IKEA. For reference, the table top I purchased is here: http://www.ikea.com/us/en/catalog/products/50106773/ and the legs I purchased are here: http://www.ikea.com/us/en/catalog/products/30177912/

The tabletop came with predrilled holes for legs like the SJUNNE and putting them on was pretty easy. I noticed however that the table wobbles whenever I type or even just bump it which is pretty annoying. I want this thing to be solid.

I've done a lot of research on the issue and I've learned a few different things. Some people have used "L" brackets to attach the table to the wall to make it sturdy. While this might work, I don't want to really do that.

When inspecting the legs I noticed that it was the leg screwed into the base that would wobble. For reference take a look at page 3 to see how this leg is assembled: http://www.ikea.com/us/en/assembly_instructions/sjunne-leg__AA-846721-2_pub.pdf

So on the base I put masking tape all around where the leg was screwed into and hammered in the leg to make sure it would be secure and not wobble around. This has reduced the wobble a little bit but not completely.

I'd suggest using something to solidify the connection between the leg and the plates. JB Weld would be a possible option. Mix it up and put a generous amount between the leg and bracket, then tighten up the bolts. Let it set up for about 24 hours and you should now have solid material between the two parts to shim the wobble away.

By clicking Accept all cookies, you agree Stack Exchange can store cookies on your device and disclose information in accordance with our Cookie Policy.

linnmon ikea table wobble - off topic - linus tech tips

linnmon ikea table wobble - off topic - linus tech tips

I have the 150cmx75cm version and was planning to place my PC on the right but I'm now u sure due to the wobble of the table. Even when I use the table for homework such as writing a feel it wobble it's not much but it's there.

I have the 150cmx75cm version and was planning to place my PC on the right but I'm now u sure due to the wobble of the table. Even when I use the table for homework such as writing a feel it wobble it's not much but it's there.

They are non adjustable legs, what ghetto things would you suggest I put under the legs. If it doesn't work there is other ways of fixing it such as buying the add-on Alex draw unfit which would replace two of the legs but I'd rather see if there's a cheaper way.

Ikea tables will tend to do that with those metalpole legs as there is no bracing between the legs or back to keep everything stiff,you would be better if you say had a bookshelf legs which are much wider and not easily be moved.

Are you on carpet? If you are, then your only option is the Alex drawers. If you're on a hard floor, then put small pieces of paperuntil all the legs are sturdy. (Cut the paper so it fits within the area of the desk legs so it doesn't stand out)

Are you on carpet? If you are, then your only option is the Alex drawers. If you're on a hard floor, then put small pieces of paperuntil all the legs are sturdy. (Cut the paper so it fits within the area of the desk legs so it doesn't stand out)

I know this sounds like a wild notion, but have you considered taking the wobbly legs back to Ikea and simply exchanging them for new legs? Assuming you purchased the unit within the last year, it'll have some sort of warranty.

Related Equipments