used portable small jaw crushers

gyratory crusher - an overview | sciencedirect topics

gyratory crusher - an overview | sciencedirect topics

Gyratory crushers were invented by Charles Brown in 1877 and developed by Gates around 1881 and were referred to as a Gates crusher [1]. The smaller form is described as a cone crusher. The larger crushers are normally known as primary crushers as they are designed to receive run-on-mine (ROM) rocks directly from the mines. The gyratory crushers crush to reduce the size by a maximum of about one-tenth its size. Usually, metallurgical operations require greater size reduction; hence, the products from the primary crushers are conveyed to secondary or cone crushers where further reduction in size takes place. Here, the maximum reduction ratio is about 8:1. In some cases, installation of a tertiary crusher is required where the maximum reduction is about 10:1. The secondary crushers are also designed on the principle of gyratory crushing, but the construction details vary.

Similar to jaw crushers, the mechanism of size reduction in gyratory crushers is primarily by the compressive action of two pieces of steel against the rock. As the distance between the two plates decreases continuous size reduction takes place. Gyratory crushers tolerate a variety of shapes of feed particles, including slabby rock, which are not readily accepted in jaw crushers because of the shape of the feed opening.

The gyratory crusher shown in Figure 2.6 employs a crushing head, in the form of a truncated cone, mounted on a shaft, the upper end of which is held in a flexible bearing, whilst the lower end is driven eccentrically so as to describe a circle. The crushing action takes place round the whole of the cone and, since the maximum movement is at the bottom, the characteristics of the machine are similar to those of the Stag crusher. As the crusher is continuous in action, the fluctuations in the stresses are smaller than in jaw crushers and the power consumption is lower. This unit has a large capacity per unit area of grinding surface, particularly if it is used to produce a small size reduction. It does not, however, take such a large size of feed as a jaw crusher, although it gives a rather finer and more uniform product. Because the capital cost is high, the crusher is suitable only where large quantities of material are to be handled.

However, the gyratory crusher is sensitive to jamming if it is fed with a sticky or moist product loaded with fines. This inconvenience is less sensitive with a single-effect jaw crusher because mutual sliding of grinding surfaces promotes the release of a product that adheres to surfaces.

The profile of active surfaces could be curved and studied as a function of the product in a way to allow for work performed at a constant volume and, as a result, a higher reduction ratio that could reach 20. Inversely, at a given reduction ratio, effective streamlining could increase the capacity by 30%.

Maintenance of the wear components in both gyratory and cone crushers is one of the major operating costs. Wear monitoring is possible using a Faro Arm (Figure 6.10), which is a portable coordinate measurement machine. Ultrasonic profiling is also used. A more advanced system using a laser scanner tool to profile the mantle and concave produces a 3D image of the crushing chamber (Erikson, 2014). Some of the benefits of the liner profiling systems include: improved prediction of mantle and concave liner replacement; identifying asymmetric and high wear areas; measurement of open and closed side settings; and quantifying wear life with competing liner alloys.

Crushers are widely used as a primary stage to produce the particulate product finer than about 50100mm. They are classified as jaw, gyratory, and cone crushers based on compression, cutter mill based on shear, and hammer crusher based on impact.

A jaw crusher consists essentially of two crushing plates, inclined to each other forming a horizontal opening by their lower borders. Material is crushed between a fixed and a movable plate by reciprocating pressure until the crushed product becomes small enough to pass through the gap between the crushing plates. Jaw crushers find a wide application for brittle materials. For example, they are used for comminution of porous copper cake. A Fritsch jaw crusher with maximal feed size 95mm, final fineness (depends on gap setting) 0.315mm, and maximal continuous throughput 250Kg/h is shown in Fig. 2.8.

A gyratory crusher includes a solid cone set on a revolving shaft and placed within a hollow body, which has conical or vertical sloping sides. Material is crushed when the crushing surfaces approach each other and the crushed products fall through the discharging opening.

Hammer crushers are used either as a one-step primary crusher or as a secondary crusher for products from a primary crusher. They are widely used for crushing hard metal scrap for different hard metal recycling processes. Pivoted hammers are pendulous, mounted on the horizontal axes symmetrically located along the perimeter of a rotor. Crushing takes place by the impact of material pieces with the high speed moving hammers and by contact with breaker plates. A cylindrical grating or screen is placed beneath the rotor. Materials are reduced to a size small enough to pass through the openings of the grating or screen. The size of the product can be regulated by changing the spacing of the grate bars or the opening of the screen.

The feature of the hammer crushers is the appearance of elevated pressure of air in the discharging unit of the crusher and underpressure in the zone around the shaft close to the inside surface of the body side walls. Thus, the hammer crushers also act as high-pressure, forced-draught fans. This may lead to environmental pollution and product losses in fine powder fractions. A design for a hammer crusher (Fig. 2.9) essentially allows a decrease of the elevated pressure of air in the crusher discharging unit [5]. The A-zone beneath the screen is communicated through the hollow ribs and openings in the body side walls with the B-zone around the shaft close to the inside surface of body side walls. As a result, the circulation of suspended matter in the gas between A and B zones is established and the high pressure of air in the discharging unit of crusher is reduced.

Crushers are widely used as a primary stage to produce the particulate product finer than about 50100 mm in size. They are classified as jaw, gyratory and cone crushers based on compression, cutter mill based on shear and hammer crusher based on impact.

A jaw crusher consists essentially of two crushing plates, inclined to each other forming a horizontal opening by their lower borders. Material is crushed between a fixed and a movable plate by reciprocating pressure until the crushed product becomes small enough to pass through the gap between the crushing plates. Jaw crushers find a wide application for brittle materials. For example, they are used for comminution of porous copper cake.

A gyratory crusher includes a solid cone set on a revolving shaft and placed within a hollow body, which has conical or vertical sloping sides. Material is crushed when the crushing surfaces approach each other and the crushed products fall through the discharging opening.

Hammer crushers are used either as a one-step primary crusher or as a secondary crusher for products from a primary crusher. They are widely used for crushing of hard metal scrap for different hard metal recycling processes.

Pivoted hammers are pendulous, mounted on the horizontal axes symmetrically located along the perimeter of a rotor and crushing takes place by the impact of material pieces with the high speed moving hammers and by contact with breaker plates. A cylindrical grating or screen is placed beneath the rotor. Materials are reduced to a size small enough pass through the openings of the grating or screen. The size of product can be regulated by changing the spacing of the grate bars or the opening of the screen.

The feature of the hammer crushers is the appearance of elevated pressure of air in the discharging unit of the crusher and underpressure in the zone around of the shaft close to the inside surface of the body side walls. Thus, the hammer crushers also act as high-pressure forced-draught fans. This may lead to environmental pollution and product losses in fine powder fractions.

A design for a hammer crusher (Figure 2.6) allows essentially a decrease of the elevated pressure of air in the crusher discharging unit [5]. The A-zone beneath the screen is communicated through the hollow ribs and openings in the body side walls with the B-zone around the shaft close to the inside surface of body side walls. As a result, circulation of suspended matter in the gas between A- and B-zones is established and high pressure of air in the discharging unit of crusher is reduced.

Jaw crushers are mainly used as primary crushers to produce material that can be transported by belt conveyors to the next crushing stages. The crushing process takes place between a fixed jaw and a moving jaw. The moving jaw dies are mounted on a pitman that has a reciprocating motion. The jaw dies must be replaced regularly due to wear. Figure 8.1 shows two basic types of jaw crushers: single toggle and double toggle. In the single toggle jaw crusher, an eccentric shaft is installed on the top of the crusher. Shaft rotation causes, along with the toggle plate, a compressive action of the moving jaw. A double toggle crusher has, basically, two shafts and two toggle plates. The first shaft is a pivoting shaft on the top of the crusher, while the other is an eccentric shaft that drives both toggle plates. The moving jaw has a pure reciprocating motion toward the fixed jaw. The crushing force is doubled compared to single toggle crushers and it can crush very hard ores. The jaw crusher is reliable and robust and therefore quite popular in primary crushing plants. The capacity of jaw crushers is limited, so they are typically used for small or medium projects up to approximately 1600t/h. Vibrating screens are often placed ahead of the jaw crushers to remove undersize material, or scalp the feed, and thereby increase the capacity of the primary crushing operation.

Both cone and gyratory crushers, as shown in Figure 8.2, have an oscillating shaft. The material is crushed in a crushing cavity, between an external fixed element (bowl liner) and an internal moving element (mantle) mounted on the oscillating shaft assembly. An eccentric shaft rotated by a gear and pinion produces the oscillating movement of the main shaft. The eccentricity causes the cone head to oscillate between the open side setting (o.s.s.) and closed side setting (c.s.s.). In addition to c.s.s., eccentricity is one of the major factors that determine the capacity of gyratory and cone crushers. The fragmentation of the material results from the continuous compression that takes place between the mantle and bowl liners. An additional crushing effect occurs between the compressed particles, resulting in less wear of the liners. This is also called interparticle crushing. The gyratory crushers are equipped with a hydraulic setting adjustment system, which adjusts c.s.s. and thus affects product size distribution. Depending on cone type, the c.s.s. setting can be adjusted in two ways. The first way is by rotating the bowl against the threads so that the vertical position of the outer wear part (concave) is changed. One advantage of this adjustment type is that the liners wear more evenly. Another principle of setting adjustment is by lifting/lowering the main shaft. An advantage of this is that adjustment can be done continuously under load. To optimize operating costs and improve the product shape, as a rule of thumb, it is recommended that cones always be choke-fed, meaning that the cavity should be as full of rock material as possible. This can be easily achieved by using a stockpile or a silo to regulate the inevitable fluctuation of feed material flow. Level monitoring devices that detect the maximum and minimum levels of the material are used to start and stop the feed of material to the crusher as needed.

Primary gyratory crushers are used in the primary crushing stage. Compared to the cone type crusher, a gyratory crusher has a crushing chamber designed to accept feed material of a relatively large size in relation to the mantle diameter. The primary gyratory crusher offers high capacity thanks to its generously dimensioned circular discharge opening (which provides a much larger area than that of the jaw crusher) and the continuous operation principle (while the reciprocating motion of the jaw crusher produces a batch crushing action). The gyratory crusher has capacities starting from 1200 to above 5000t/h. To have a feed opening corresponding to that of a jaw crusher, the primary gyratory crusher must be much taller and heavier. Therefore, primary gyratories require quite a massive foundation.

The cone crusher is a modified gyratory crusher. The essential difference is that the shorter spindle of the cone crusher is not suspended, as in the gyratory, but is supported in a curved, universal bearing below the gyratory head or cone (Figure 8.2). Power is transmitted from the source to the countershaft to a V-belt or direct drive. The countershaft has a bevel pinion pressed and keyed to it and drives the gear on the eccentric assembly. The eccentric assembly has a tapered, offset bore and provides the means whereby the head and main shaft follow an eccentric path during each cycle of rotation. Cone crushers are used for intermediate and fine crushing after primary crushing. The key factor for the performance of a cone type secondary crusher is the profile of the crushing chamber or cavity. Therefore, there is normally a range of standard cavities available for each crusher, to allow selection of the appropriate cavity for the feed material in question.

Depending on the size of the debris, it may either be ready to enter the recycling process or need to be broken down to obtain a product with workable particle sizes, in which case hydraulic breakers mounted on tracked or wheeled excavators are used. In either case, manual sorting of large pieces of steel, wood, plastics and paper may be required, to minimise the degree of contamination of the final product.

The three types of crushers most commonly used for crushing CDW materials are the jaw crusher, the impact crusher and the gyratory crusher (Figure 4.4). A jaw crusher consists of two plates, with one oscillating back and forth against the other at a fixed angle (Figure 4.4(a)) and it is the most widely used in primary crushing stages (Behera etal., 2014). The jaw crusher can withstand large and hard-to-break pieces of reinforced concrete, which would probably cause the other crushing machines to break down. Therefore, the material is initially reduced in jaw crushers before going through any other crushing operation. The particle size reduction depends on the maximum and minimum size of the gap at the plates (Hansen, 2004).

An impact crusher breaks the CDW materials by striking them with a high-speed rotating impact, which imparts a shearing force on the debris (Figure 4.4(b)). Upon reaching the rotor, the debris is caught by steel teeth or hard blades attached to the rotor. These hurl the materials against the breaker plate, smashing them into smaller particle sizes. Impact crushers provide better grain-size distribution of RA for road construction purposes, and they are less sensitive to material that cannot be crushed, such as steel reinforcement.

Generally, jaw and impact crushers exhibit a large reduction factor, defined as the ratio of the particle size of the input to that of the output material. A jaw crusher crushes only a small proportion of the original aggregate particles but an impact crusher crushes mortar and aggregate particles alike and thus generates a higher amount of fine material (OMahony, 1990).

Gyratory crushers work on the same principle as cone crushers (Figure 4.4(c)). These have a gyratory motion driven by an eccentric wheel. These machines will not accept materials with a large particle size and therefore only jaw or impact crushers should be considered as primary crushers. Gyratory and cone crushers are likely to become jammed by fragments that are too large or too heavy. It is recommended that wood and steel be removed as much as possible before dumping CDW into these crushers. Gyratory and cone crushers have advantages such as relatively low energy consumption, a reasonable amount of control over the particle size of the material and production of low amounts of fine particles (Hansen, 2004).

For better control of the aggregate particle size distribution, it is recommended that the CDW should be processed in at least two crushing stages. First, the demolition methodologies used on-site should be able to reduce individual pieces of debris to a size that the primary crusher in the recycling plant can take. This size depends on the opening feed of the primary crusher, which is normally bigger for large stationary plants than for mobile plants. Therefore, the recycling of CDW materials requires careful planning and communication between all parties involved.

A large proportion of the product from the primary crusher can result in small granules with a particle size distribution that may not satisfy the requirements laid down by the customer after having gone through the other crushing stages. Therefore, it should be possible to adjust the opening feed size of the primary crusher, implying that the secondary crusher should have a relatively large capacity. This will allow maximisation of coarse RA production (e.g., the feed size of the primary crusher should be set to reduce material to the largest size that will fit the secondary crusher).

The choice of using multiple crushing stages mainly depends on the desired quality of the final product and the ratio of the amounts of coarse and fine fractions (Yanagi etal., 1998; Nagataki and Iida, 2001; Nagataki etal., 2004; Dosho etal., 1998; Gokce etal., 2011). When recycling concrete, a greater number of crushing processes produces a more spherical material with lower adhered mortar content (Pedro etal., 2015), thus providing a superior quality of material to work with (Lotfi etal., 2017). However, the use of several crushing stages has some negative consequences as well; in addition to costing more, the final product may contain a greater proportion of finer fractions, which may not always be a suitable material.

The first step of physical beneficiation is crushing and grinding the iron ore to its liberation size, the maximum size where individual particles of gangue are separated from the iron minerals. A flow sheet of a typical iron ore crushing and grinding circuit is shown in Figure 1.2.2 (based on Ref. [4]). This type of flow sheet is usually followed when the crude ore contains below 30% iron. The number of steps involved in crushing and grinding depends on various factors such as the hardness of the ore and the level of impurities present [5].

Jaw and gyratory crushers are used for initial size reduction to convert big rocks into small stones. This is generally followed by a cone crusher. A combination of rod mill and ball mills are then used if the ore must be ground below 325 mesh (45m). Instead of grinding the ore dry, slurry is used as feed for rod or ball mills, to avoid dusting. Oversize and undersize materials are separated using a screen; oversize material goes back for further grinding.

Typically, silica is the main gangue mineral that needs to be separated. Iron ore with high-silica content (more than about 2%) is not considered an acceptable feed for most DR processes. This is due to limitations not in the DR process itself, but the usual customer, an EAF steelmaking shop. EAFs are not designed to handle the large amounts of slag that result from using low-grade iron ores, which makes the BF a better choice in this situation. Besides silica, phosphorus, sulfur, and manganese are other impurities that are not desirable in the product and are removed from the crude ore, if economically and technically feasible.

Beneficiation of copper ores is done almost exclusively by selective froth flotation. Flotation entails first attaching fine copper mineral particles to bubbles rising through an orewater pulp and, second, collecting the copper minerals at the top of the pulp as a briefly stable mineralwaterair froth. Noncopper minerals do not attach to the rising bubbles; they are discarded as tailings. The selectivity of the process is controlled by chemical reagents added to the pulp. The process is continuous and it is done on a large scale103 to 105 tonnes of ore feed per day.

Beneficiation is begun with crushing and wet-grinding the ore to typically 10100m. This ensures that the copper mineral grains are for the most part liberated from the worthless minerals. This comminution is carried out with gyratory crushers and rotary grinding mills. The grinding is usually done with hard ore pieces or hard steel balls, sometimes both. The product of crushing and grinding is a waterparticle pulp, comprising 35% solids.

Flotation is done immediately after grindingin fact, some flotation reagents are added to the grinding mills to ensure good mixing and a lengthy conditioning period. The flotation is done in large (10100m3) cells whose principal functions are to provide: clouds of air bubbles to which the copper minerals of the pulp attach; a means of overflowing the resulting bubblecopper mineral froth; and a means of underflowing the unfloated material into the next cell or to the waste tailings area.

Selective attachment of the copper minerals to the rising air bubbles is obtained by coating the particles with a monolayer of collector molecules. These molecules usually have a sulfur atom at one end and a hydrophobic hydrocarbon tail at the other (e.g., potassium amyl xanthate). Other important reagents are: (i) frothers (usually long-chain alcohols) which give a strong but temporary froth; and (ii) depressants (e.g., CaO, NaCN), which prevent noncopper minerals from floating.

conveyors for sale at grinder crushers screen

conveyors for sale at grinder crushers screen

Copyright GRINDERCRUSHERSCREEN.NET 2019 All rights reserved. GrinderCrusherScreen, Screen USA, Hammerhead & Shark design are trademarks or registered trademarks of Screen USA Inc. All other trademarks are owned by the respected brand owners.

jaw crusher working principle

jaw crusher working principle

A sectional view of the single-toggle type of jaw crusher is shown below.In one respect, the working principle and application of this machine are similar to all types of rock crushers, the movable jaw has its maximum movement at the top of the crushing chamber, and minimum movement at the discharge point. The motion is, however, a more complex one than the Dodge motion, being the resultant of the circular motion of the eccentric shaft at the top of the swing jaw. combined with the rocking action of the inclined toggle plate at the bottom of this jaw. The motion at the receiving opening is elliptical; at the discharge opening, it is a thin crescent, whose chord is inclined upwardly toward the stationary jaw. Thus, at all points in the crushing chamber, the motion has both, vertical and horizontal, components.

It will be noted that the motion is a rocking one. When the swing jaw is rising, it is opening, at the top, during the first half of the stroke, and closing during the second half, whereas the bottom of the jaw is closing during the entire up-stroke. A reversal of this motion occurs during the downstroke of the eccentric.

The horizontal component of motion (throw) at the discharge point of the single-toggle jaw crusher is greater than the throw of the Dodge crusher at that point; in fact, it is about three-fourths that of Blake machines of similar short-side receiving-opening dimensions. The combination of favorable crushing angle, and nonchoking jaw plates, used in this machine, promotes a much freer action through the choke zone than that in the Dodge crusher. Capacities compare very favorably with comparable sizes of the Blake machine with non-choking plates, and permissible discharge settings are finer. A table of ratings is given.

The single-toggle type jaw crusher has been developed extensively. Because of its simplicity, lightweight, moderate cost, and good capacity, it has found quite a wide field of application in portable crushing rigs. It also fits into the small, single-stage mining operation much better than the slower Dodge type. Some years since this type was developed with very wide openings for reduction crushing applications, but it was not able to seriously challenge the gyratory in this field, especially when the high-speed modern versions of the latter type were introduced.

Due to the pronounced vertical components of motion in the single-toggle machine, it is obvious that a wiping action takes place during the closing strokes; either, the swing jaw must slip on the material, or the material must slip along the stationary jaw. It is inevitable that such action should result in accelerated wear of the jaw plates; consequently, the single-toggle crusher is not an economical machine for reducing highly abrasive, or very hard, tough rock. Moreover, the large motion at the receiving opening greatly accentuates shocks incidental to handling the latter class of material, and the full impact of these shocks must be absorbed by the bearings in the top of the swing jaw.

The single-toggle machine, like the Dodge type, is capable of making a high ratio-of-reduction, a faculty which enables it to perform a single-stage reduction of hand-loaded, mine run ore to a suitable ball mill, or rod mill, feed.

Within the limits of its capacity, and size of receiving openings, it is admirably suited for such operations. Small gravel plant operations are also suited to this type of crusher, although it should not be used where the gravel deposit contains extremely hard boulders. The crusher is easy to adjust, and, in common with most machines of the jaw type, is a simple crusher to maintain.

As rock particles are compressed between the inclined faces of the mantle and concaves there is a tendency for them to slip upward. Slippage occurs in all crushers, even in ideal conditions. Only the particles weight and the friction between it and the crusher surfaces counteract this tendency. In particular, very hard rock tends to slip upward rather than break. Choke feeding this kind of material can overload the motor, leaving no option but to regulate the feed. Smaller particles, which weigh less, and harder particles, which are more resistant to breakage, will tend to slip more. Anything that reduces friction, such as spray water or feed moisture, will promote slippage.

Leading is a technique for measuring the gap between fixed and moveable jaws. The procedure is performed while the crusher is running empty. A lead plug is lowered on a lanyard to the choke point, then removed and measured to find out how much thickness remains after the crusher has compressed it. This measures the closed side setting. The open side setting is equal to this measurement plus the throw of the mantle. The minimum safe closed side setting depends on:

Blake (Double Toggle) Originally the standard jaw crusher used for primary and secondary crushing of hard, tough abrasive rocks. Also for sticky feeds. Relatively coarse slabby product, with minimum fines.

Overhead Pivot (Double Toggle) Similar applications to Blake. Overhead pivot; reduces rubbing on crusher faces, reduces choking, allows higher speeds and therefore higher capacities. Energy efficiency higher because jaw and charge not lifted during cycle.

Overhead Eccentric (Single Toggle) Originally restricted to sampler sizes by structural limitations. Now in the same size of Blake which it has tended to supersede, because overhead eccentric encourages feed and discharge, allowing higher speeds and capacity, but with higher wear and more attrition breakage and slightly lower energy efficiency. In addition as compared to an equivalent double toggle, they are cheaper and take up less floor space.

Since the jaw crusher was pioneered by Eli Whitney Blake in the 2nd quarter of the 1800s, many have twisted the Patent and come up with other types of jaw crushers in hopes of crushing rocks and stones more effectively. Those other types of jaw crusher inventors having given birth to 3 groups:

Heavy-duty crushing applications of hard-to-break, high Work Index rocks do prefer double-toggle jaw crushers as they are heavier in fabrication. A double-toggle jaw crusher outweighs the single-toggle by a factor of 2X and well as costs more in capital for the same duty. To perform its trade-off evaluation, the engineering and design firm will analyze technical factors such as:

1. Proper selection of the jaws. 2. Proper feed gradation. 3. Controlled feed rate. 4. Sufficient feeder capacity and width. 5. Adequate crusher discharge area. 6. Discharge conveyor sized to convey maximum crusher capacity.

Although the image below is of a single-toggle, it illustrates the shims used to make minor setting changes are made to the crusher by adding or removing them in the small space between the crushers mainframe and the rea toggle block.

The jaw crusher discharge opening is the distance from the valley between corrugations on one jaw to the top of the mating corrugation on the other jaw. The crusher discharge opening governs the size of finished material produced by the crusher.

Crusher must be adjusted when empty and stopped. Never close crusher discharge opening to less than minimum opening. Closing crusher opening to less than recommended will reduce the capacity of crusher and cause premature failure of shaft and bearing assembly.

To compensate for wear on toggle plate, toggle seat, pitman toggle seat, and jaws additional shims must be inserted to maintain the same crusher opening. The setting adjustment system is designed to compensate for jaw plate wear and to change the CSS (closed side setting) of the jaw crusher. The setting adjustment system is built into the back frame end.

Here also the toggle is kept in place by a compression spring. Large CSS adjustments are made to the jaw crusher by modifying the length of the toggle. Again, shims allow for minor gap adjustments as they are inserted between the mainframe and the toggle block.

is done considering the maximum rock-lump or large stone expected to be crushed and also includes the TPH tonnage rate needing to be crushed. In sizing, we not that jaw crushers will only have around 75% availability and extra sizing should permit this downtime.

As a rule, the maximum stone-lump dimension need not exceed 80% of the jaw crushers gape. For intense, a 59 x 79 machine should not see rocks larger than 80 x 59/100 = 47 or 1.2 meters across. Miners being miners, it is a certainty during day-to-day operation, the crusher will see oversized ore but is should be fine and pass-thru if no bridging takes place.

It will be seen that the pitman (226) is suspended from an eccentric on the flywheel shaft and consequently moves up and down as the latter revolves, forcing the toggle plates outwards at each revolution. The seating (234) of the rear toggle plate (239) is fixed to the crusher frame; the bottom of the swing jaw (214) is therefore pushed forward each time the pitman rises, a tension rod (245) fitted with a spring (247) being used to bring it back as the pitman falls. Thus at each revolution of the flywheel the movable jaw crushes any lump of ore once against the stationary jaw (212) allowing it to fall as it swings back on the return half-stroke until eventually the pieces have been broken small enough to drop out. It follows that the size to which the ore is crushed.

The jaw crusher is not so efficient a machine as the gyratory crusher described in the next paragraph, the chief reason for this being that its crushing action is confined to the forward stroke of the jaw only, whereas the gyratory crusher does useful work during the whole of its revolution. In addition, the jaw crusher cannot be choke-fed, as can the other machine, with the result that it is difficult to keep it working at its full capacity that is, at maximum efficiency.

Tables 5 and 6 give particulars of different sizes of jaw crushers. The capacity figures are based on ore weighing 100 lb. per cubic foot; for a heavier ore, the figures should be increased in direct proportion to its weight in pounds per cubic foot.

The JAW crusher and the GYRATORY crusher have similarities that put them into the same class of crusher. They both have the same crushing speed, 100 to 200 R.P.M. They both break the ore by compression force. And lastly, they both are able to crush the same size of ore.

In spite of their similarities, each crusher design has its own limitations and advantages that differ from the other one. A Gyratory crusher can be fed from two sides and is able to handle ore that tends to slab. Its design allows a higher-speed motor with a higher reduction ratio between the motor and the crushing surface. This means a dollar saving in energy costs.

A Jaw crusher on the other hand requires an Ely wheel to store energy. The box frame construction of this type of crusher also allows it to handle tougher ore. This design restricts the feeding of the crusher to one side only.

The ore enters from the top and the swing jaw squeezes it against the stationary jaw until it breaks. The broken ore then falls through the crusher to be taken away by a conveyor that is under the crusher.Although the jaws do the work, the real heart of this crusher is the TOGGLE PLATES, the PITMAN, and the PLY WHEEL.

These jaw crushers are ideal forsmall properties and they are of the high capacity forced feed design.On this first Forced Feed Jaw Crusher, the mainframe and bumper are cast of special alloy iron and the initial cost is low. The frame is ribbed both vertically and horizontally to give maximum strength with minimum weight. The bumper is ruggedly constructed to withstand tremendous shock loads. Steel bumper can be furnished if desired. The side bearings are bronze; the bumper bearings are of the antifriction type.

This bearing arrangement adds both strength and ease of movement. The jaw plates and cheek plates are reversible and are of the best-grade manganese steel. The jaw opening is controlled by the position of an adjustable wedge block. The crusher is usually driven by a V-to-V belt drive, but it can be arranged for either V-to-flat or fiat belt drive. The 8x10 size utilizes a split frame and maybe packed for muleback transportation. Cast steel frames can be furnished to obtain maximum durability.

This second type of forced feed rock crusher is similar in design to the Type H listed above except for having a frame and bumper made of cast steel. This steel construction makes the unit lighter per unit of size and adds considerable strength. The bearings are all of the special design; they are bronze and will stand continuous service without any danger of failure. The jaw and cheek plates are manganese steel; and are completely reversible, thus adding to their wearing life. The jaw opening is controlled by the position of an adjustable wedge block. The crushers are usually driven by V-to-V but can be arranged for V-to-flat and belt drive. The 5x6 size and the 8x10 size can be made with sectionalized frame for muleback transportation. This crusher is ideal for strenuous conditions. Consider a multi jaw crusher.

Some jaw crushers are on-floor, some aboveground, and others underground. This in many countries, and crushing many kinds of ore. The Traylor Bulldog Jaw crusher has enjoyed world wide esteem as a hard-working, profit-producing, full-proof, and trouble-free breaker since the day of its introduction, nearly twenty years ago. To be modern and get the most out of your crushing dollars, youll need the Building breaker. Wed value the privilege of telling you why by letter, through our bulletins, or in person. Write us now today -for a Blake crusher with curved jaw plates that crush finer and step up production.

When a machine has such a reputation for excellence that buyers have confidence in its ability to justify its purchase, IT MUST BE GOOD! Take the Type G Traylor Jaw Crusher, for instance. The engineers and operators of many great mining companies know from satisfying experience that this machine delivers a full measure of service and yields extra profits. So they specify it in full confidence and the purchase is made without the usual reluctance to lay out good money for a new machine.

The success of the Type G Traylor Jaw Crusheris due to several characteristics. It is (1) STRONG almost to superfluity, being built of steel throughout; it is (2) FOOL-PROOF, being provided with our patented Safety Device which prevents breakage due to tramp iron or other causes of jamming; it is (3) ECONOMICAL to operate and maintain, being fitted with our well-known patented Bulldog Pitman and Toggle System, which saves power and wear by minimizing frictionpower that is employed to deliver increased production; it is (4) CONVENIENT to transport and erect in crowded or not easily accessible locations because it is sectionalized to meet highly restrictive conditions.

Whenever mining men need a crusher that is thoroughly reliable and big producer (which is of all time) they almost invariably think first of a Traylor Type G Jaw Crusher. By experience, they know that this machine has built into it the four essentials to satisfaction and profit- strength, foolproofness, economy, and convenience.

Maximum STRENGTH lies in the liberal design and the steel of which crushers parts are made-cast steel frame, Swing Jaw, Pitman Cap and Toggles, steel Shafts and Pitman rods and manganese steel Jaw Plates and Cheek Plates. FOOLPROOFNESS is provided by our patented and time-tested safety Device which prevents breakage due to packing or tramp iron. ECONOMY is assured by our well-known Bulldog Pitman and Toggle System, which saves power and wear by minimizing friction, the power that is used to deliver greater productivity. CONVENIENCE in transportation and erection in crowded or not easily accessible locations is planned for in advance by sectionalisation to meet any restrictive conditions.

Many of the worlds greatest mining companies have standardized upon the Traylor Type G Jaw Crusher. Most of them have reordered, some of them several times. What this crusher is doing for them in the way of earning extra dollars through increased production and lowered costs, it will do for you! Investigate it closely. The more closely you do, the better youll like it.

rock crushers at kellyco | gold prospecting equipment

rock crushers at kellyco | gold prospecting equipment

In order to crush rocks and extract gold, you will need the right equipment that can achieve this quickly and efficiently. That being said, utilizing rock crushers will help prevent you from missing the opportunity of hitting paydirt. Portable rock crushers will change the way you prospect for gold and with several options available, making sure that you select the correct product will be invaluable.

The term itself is pretty self-explanatory. These machines are designed to crush any type of stone from quartz to limestone and everything in between. How much is able to be processed per hour will depend on the model you purchase.

The intention of small rock crushers, such as those we have here at Kellyco, is to allow you to extract more gold instead of leaving any paydirt behind. The amount of gold that can be contained within rocks in areas you didnt know were there may surprise you. However, without a rock crusher in your arsenal, you will never be aware of what was left behind.

Portable rock crushers use a very simple approach, power. With various sized engines available depending on the model, these machines are designed to take small rocks and, thanks to a huge amount of pressure and power, crush them down and allow you to process them through your sluice box.

The aim of any small rock crusher for sale is to be able to break that rock down into a fine powder. In doing so, it will be able to pass through a classifier before going through the sluice box and any gold can then be separated. Even relatively small pieces of rock that are left intact could lead to you missing out on some gold, and when you know you have hit paydirt then you hardly want to leave anything behind.

Most models, including the Keene G-Force rock crusher, will use a hopper box with gravity to move the rocks through the crusher. The rock is fed into the hopper box and then moves into the central compartment of the crusher. A huge amount of force effectively smashes the rock at high speed and the greater the force then the finer the powder. With that in mind, the power of the engine contained within the rock crusher will be important.

With several options available, knowing which are the best rock crushers for sale will make your job of identifying the right product for you easier. Of course, budget may play a part but Kellyco does have a number of small portable rock crushers for sale across a wide price range.

There are several key points to consider when looking at purchasing a portable rock crusher. First, there is the volume of rock that can process for up to an hour. With some capable of producing over 2 tons of powder, also known as grind, this should be more than adequate for the majority of treasure hunters.

Another point to remember is the size of rock that the crusher can handle. These kinds of rock crushers for sale are not designed to take large boulders and break them down on an industrial scale. Instead, we are talking about rocks that are around one inch in size that can be effectively smashed in seconds. Once again, we recommend that you check the maximum size that the model you are looking at can take before making your purchase.

The best rock crushers for sale will contain a large hopper box, be capable of crushing a substantial amount of rock in one hour, and break things down into an easy to manage powder. As long as those points are met, then you should not have any problem extracting as much gold as possible from your expedition.

There are several additional features that deserve to be mentioned with a rock crusher. For example, you need to examine how a particular model is powered. With both gas and electric available as options, it should be easy for you to get things started. As a side-note, the gas version is often regarded as being cheaper to operate. Also, we have to think about transportation. These machines are not the lightest around which is why there are lighter models, such as the Keene trailer mounted crusher, on the market. This does make it easier to get to those more remote areas that you may wish to venture to on your expeditions.

You may wish to consider looking at the process that the rock crusher uses in order to deliver the powder. Different models may put the rock through various processes with each stage resulting in something even finer than before.

Finally, there has to be the question of replacing parts even when you are out there in the wild. Cleaning the machine and clearing it of debris is important or it may result in becoming clogged. However, models that have been manufactured by Keene will all be easy to adjust and maintain so this shouldnt be a problem.

If rock crushers are something of interest to you, but you are unsure of what to do next, then feel free to reach out to our customer service team. Contact us directly via our customer care department and our team of expert gold prospectors will be able to advise you on the best rock crusher for your needs and answer any questions that you may have.

used portable jaw crushers for sale. white lai equipment & more | machinio

used portable jaw crushers for sale. white lai equipment & more | machinio

Powder stone crusher portable stone crusher machinery Product Description Automatic mobile stone crusher plant price is mainly composed of feeder, jaw crusher, belt conveyor, the machine production is from 85 to ...

Small Portable gold crusher hot sale in Australia This small size PE series jaw crusher max. feeding size is 130-210mm, output size is 10-60mm, capacity is 1-20 tph. Mining crusher crushing materials including gr...

Hot sale small portable henan impact crusher Product Description Hot sale small portable henan impact crusher is one of the essential mechanical equipment for mine crushing, usually used for the first grade of ma...

New design mini portable used stone crusher for sale Product Description New design mini portable used stone crusher for sale is one of the essential mechanical equipment for mine crushing, usually used for the f...

Aggregate stone crusher stone crusher plant price in india Product Description New design! Factory supported mini portable crushing plant is mainly composed of feeder, jaw crusher, belt conveyor, the machine prod...

Small scale portable 250 400 mobile diesel engine limestone quartz rock jaw crusher mini-mobile-stone-crusher-plant for sale 1.Mini Jaw Crusher Baichy small stone Jaw Crusher , PE series mine Jaw Crusher is one...

Output 200 tph Mobile rock stone Jaw Crushing Plant Price, Portable basalt stone crusher station, mobile jaw crusher machine The mobile crushing plant is applied in the crushing and screeing working of movable ma...

Affordable portable jaw stone crusher pe250x400 small gold mining equipment 1.Mini Jaw Crusher Baichy small stone Jaw Crusher , PE series mine Jaw Crusher is one of the largest-selling and the highest production...

Baichy small jaw stone crusher introduce Henan baichy machinery company produces many kinds of crusher, as the first crushing stage, jaw crushers are used widely.And now,the mini jaw crusher are popular with our ...

Portable pe400*600 rock stone crushing plant prices mobile jaw crusher price The Stone Crushing Plant mainly consists of Vibrating Feeder, Jaw Crusher, Cone Crusher or Impact Crusher, Vibrating Screen, Belt Conve...

Diesel engine mobile 600x400 portable jaw crusher gold rock crushing machine The Stone Crushing Plant mainly consists of Vibrating Feeder, Jaw Crusher, Cone Crusher or Impact Crusher, Vibrating Screen, Belt Conve...

used jaw crushers for sale. metso equipment & more | machinio

used jaw crushers for sale. metso equipment & more | machinio

1.We are factory and be able to give you the lowest price than market one; 2.Our products have been exported to over 80 countries and widely used in global mining and construction industry; 3.we have a prof...

1.We are factory and be able to give you the lowest price than market one; 2.Our products have been exported to over 80 countries and widely used in global mining and construction industry; 3.we have a prof...

1.We are factory and be able to give you the lowest price than market one; 2.Our products have been exported to over 80 countries and widely used in global mining and construction industry; 3.we have a prof...

1.We are factory and be able to give you the lowest price than market one; 2.Our products have been exported to over 80 countries and widely used in global mining and construction industry; 3.we have a prof...

China Stone Cruser Equipment pe200 350 pe 250x400 Lab Jaw crusher for sale This small size PE series jaw crusher max. feeding size is 130-210mm, output size is 10-60mm, capacity is 1-20 tph. Mining crusher crushi...

Small Portable gold crusher hot sale in Australia This small size PE series jaw crusher max. feeding size is 130-210mm, output size is 10-60mm, capacity is 1-20 tph. Mining crusher crushing materials including gr...

This small size PE series jaw crusher max. feeding size is 130-210mm, output size is 10-60mm, capacity is 1-20 tph. Mining crusher crushing materials including granite, basalt, limestone, river stone, sandstone, ...

used mobile stone crusher for sale stone crusher hammer Product Description used mobile stone crusher for sale stone crusher hammer is mainly used for the processing of materials such as metallurgy, chemical indu...

Stone crusher plant layout diesel mobile stone crusher Product Description Stone crusher plant layout diesel mobile stone crusher is mainly used for the processing of materials such as metallurgy, chemical indust...

Mobile crushing plant for sale in russia with cone Product Description Mobile crushing plant for sale in russia with cone is mainly used for the processing of materials such as metallurgy, chemical industry, buil...

1.We are factory and be able to give you the lowest price than market one; 2.Our products have been exported to over 80 countries and widely used in global mining and construction industry; 3.we have a prof...

500x750 stone crushing machine, large capacity limestone granite gravle gold rock jaw crusher The Stone Crushing Plant mainly consists of Vibrating Feeder, Jaw Crusher, Cone Crusher or Impact Crusher, Vibrating S...

crusher works: your truly mobile screening and crushing solutions

crusher works: your truly mobile screening and crushing solutions

A global leader in the design and distribution of a range of equipment used in the quarrying, port handling and recycling industries, EDGE Innovate has revealed their latest portable material handling offering with the launch of read more

A global leader in the design and distribution of a range of equipment used in the quarrying, port handling and recycling industries, EDGE Innovate are set to debut two new high capacity waste shredders at CONEXPO read more

Sandvik has announced the next generation heavy-duty mobile scalper, the QE442. The QE442 by Sandvik Mobile Crushers and Screens is the next generation scalper following the QE441. The QE442 is a heavy-duty mobile scalper with a read more

Sandvik has announced the all-new DD320S Development Drill. The Sandvik DD320S is a two-boom, hydraulic controlled development drill perfect for both mining and tunneling construction. Sandvik has built off of their existing drilling and mining read more

Sandvik has announced the launch of their next generation 2 series impact crusher. The new QI442 tracked mobile impact crusher was announced on June 14, 2019. The newest addition features the CI621 Prisec Impactor. The read more

small jaw crusher for sale - low cost of mini jaw crusher

small jaw crusher for sale - low cost of mini jaw crusher

Small jaw crusher for sale is mainly used for the medium-size crushing of various ores and bulk materials. It can crush materials with a compressive strength of not more than 320Mpa, and there are two types crushing methods: coarse crushing and fine crushing. This series of small jaw crushers has complete specifications for your reference, and its feed size is 125mm~750mm, which makes it the first choice for primary crushing.

If you need to process small pebbles and stones, you need to be equipped with a fine crusher. The processed finished products have characteristics of uniform particle size, high content of three-dimensional finished products, and high sales of finished products, which can meet the high-standard material requirements in the construction field.

If you are a beginner and do not know about mini jaw crusher, tell us your raw material characteristics, finished product requirements, site conditions, production budget, hourly production, and other requirements, we have professional engineers to equip you with a suitable model at a reasonable price. Next, lets see the types of jaw crushers we can supply.

1. The jaw crusher mini adopts a V-shaped crushing cavity design, the optimized configuration of the crushing cavity structure and moving jaw motion trajectory parameters, and a large stroke maximizes the feed size, output, and crushing ratio.

3. The elastic limit block and rubber damping device are used to replace the original rigid foot connection, which can effectively absorb the shock peak load, thereby reducing the mutual impact between the crusher and the foundation and increasing the service life of the equipment.

When the mini jaw crusher machine is working, the motor drives the eccentric shaft to rotate through the belt pulley, so that the movable jaw periodically approaches and leaves the fixed jaw, thereby squeezing, rubbing, and crushing the material, making the material from large to small, gradually decreasing, Until it is discharged from the discharge port.

Compared with the traditional PE series, the 6CX series mini jaw crusher for sale has fundamentally changed the crushing cavity, material, bearing standards, and manufacturing process. Its structure is stronger, the reliability is higher, the output is increased by more than 30%, and the unit operating cost is reduced by 20 %. This series of small jaw crushers can be widely used in all kinds of hardest and highly abrasive rocks. They are ideal products for mine crushing operations and stone processing and production.

Pre-sales service: According to your requirements, tailor-made solutions, project managers one-to-one service, factory and workshop-visiting, spot supply, free test equipment with materials, and inspection site nearby.On-sale service: delivery on time, guide the installation, and guide the test equipment on-site, until the normal production and operation.

After-sales service: Provide customers with remote assistance services at any time. If it cannot be solved, a professional engineer can be assigned to the site to solve after-sales problems. It will arrive at the scene within one day in China and within one week in foreign countries. The small size jaw crusher is guaranteed for one year and repair for life.

As for the price, we cant show you the accurate price, because we are dealing with customers from all over the world, and there are many factors that affect the price. If you want to know the small jaw crusher price, you can leave us a message on this page, we have a professional salesman and engineer to give you an explanation.

As a professional small jaw crusher manufacturer in Henan, AIMIX strictly controls every small jaw crusher machine for sale, with more reliable quality, old brand, and fairer prices. Come to the factory for discounts and other services, and AIMIX will fully understand the needs of users to ensure that we can provide you bring higher returns. What are you waiting for? Contact us now!

Related Equipments