wire rod mill process flow

rod mill - an overview | sciencedirect topics

rod mill - an overview | sciencedirect topics

Rod mills have an industrial yield that is less than that of a ball mill, which explains the fact that balls have a much larger grinding surface than rods. The power needed to operate a rod mill could exceed 30% of the power used in a ball mill.

Rod mills have the highest rolling speeds, with interpass times in the finishing stand of 15150 ms. This is too short for either static recrystallization or strain-induced precipitation, and dynamic recrystallization is the main grain refining mechanism. Microalloying could limit grain growth during rolling by particle pinning and solute drag. However, austenite grain sizes of 10m can be achieved in CMn steels with optimally designed rod rolling schedules, so the main purpose of microalloying is precipitation strengthening. As-rolled rod is typically controlled-cooled at 15C s1 in loose coils (Stelmor process) to achieve a desired final microstructure and precipitate distribution. The principle application for HSLA rod steels is as cold-formed fasteners. An example of such a steel is given in Table 2.

Rod mill charges usually occupy about 45% of the internal volume of the mill. A closely packed charge of single sized rods will have a porosity of 9.3%. With a mixed charge of small and large diameter rods, the porosity of a static load could be reduced even further. However, close packing of the charge rarely occurs and an operating bed porosity of 40% is common. Overcharging results in poor grinding and losses due to abrasion of rods and liners. Undercharging also promotes more abrasion of the rods. The height (or depth) of charge is measured in the same manner as for ball mill. The size of feed particles to a rod mill is coarser than for a ball mill. The usual feed size ranges from 6 to 25mm.

For the efficient use of rods it is necessary that they operate parallel to the central axis and the body of the mill. This is not always possible as in practice, parallel alignment is usually hampered by the accumulation of ore at the feed end where the charge tends to swell. Abrasion of rods occurs more in this area resulting in rods becoming pointed at one end. With this continuous change in shape of the grinding charge, the grinding characteristics are impaired.

The bulk density of a new rod charge is about 6.25t/m3. With time due to wear the bulk density drops. The larger the mill diameter the greater is the lowering of the bulk density. For example, the bulk density of worn rods after a specific time of grinding would be 5.8t/m3 for a 0.91m diameter mill. Under the same conditions of operation, the bulk density would be 5.4t/m3 for a 4.6m diameter mill.

In the rod mill, high carbon steel rods about 50 mm diameter and extending the whole length of the mill are used in place of balls. This mill gives a very uniform fine product and power consumption is low, although it is not suitable for very tough materials and the feed should not exceed about 25 mm in size. It is particularly useful with sticky materials which would hold the balls together in aggregates, because the greater weight of the rods causes them to pull apart again. Worn rods must be removed from time to time and replaced by new ones, which are rather cheaper than balls.

As mentioned by earlier wire rod mills housed within smelter plant premises rejects large volume of waste emulsions which because of its toxic oil contents can not be discharged in open drains. Further since above toxic oil contain in the waste emulsion being only around 7% it is imperative that the residual water after breaking the emulsion needs to be recirculated to the plant itself. Present authors developed a process [123] for breaking the emulsion and release of the residual the water conforming to statutory norms for disposal of treated water in the open drain. In this process the waste emulsion was treated with calcium hydroxide in order to coagulate the toxic oil and separate it out from the residual water. Small contaminants in the residual water were finally removed by activated charcoal, pH adjusted to 7 and the water released. Typically for 7% oil content in waste emulsion, application rate of 3wt% calcium hydroxide and 2.5wt% charcoal brought down C.O.D. of treated water within permissible range. Table3.5 gives an example of such treatment process.

Powder milling process, using ball or rod mills, aim to produce a high-quality end-product that can be composites and nanocomposites, and nanocrystalline powder particles of intermetallic compounds, amorphous, hydrides, nitrides, silicates, etc. Powder milling process has been continuously improving by introducing numerous innovative types of ball mills in order to improve the quality and homogeneity of the end-products and to increase the productivity. This chapter discusses the factors affecting the mechanical alloying, mechanical disordering, and mechanical milling processes and their effects on the quality of the desired end-products. Moreover, we will present some typical examples that show the effect of these factors on the physical and chemical properties of the milled powders.

To equalize the charge segregation at the ends of the mill, the mill is rotated in the level position for eight revolutions then tilted up 5 for one revolution, tilted down 5 for one revolution then returned to the level position for eight revolutions and the cycle repeated throughout the test.

A study of the movement of materials in a rod mill indicates that at the feed end the larger particles are first caught between the rods and reduced in size gradually towards the discharge end. Lynch [1] contended that the next lower size would break after the sizes above it had completely broken. He described this as stage breakage, the stages being in steps of 2. The size difference between the particles at the two ends of the mill would depend on

The presence of this size difference indicates that a screening effect was generated within a rod mill and that the movement of material in the mill was a combination of breakage and screening effects. The breaking process was obviously repetitive and involved breakage function, classification function and selection functions. Therefore for rod mills, an extension of the general model for breakage within each stage applies, where the feed to stage (i + 1) is the product from stage i. That is, within a single stage i, the general model defined by Equation (11.18) applies

The number of stages, v, is the number of elements taken in the feed vector. A stage of breakage is defined as the interval taken to eliminate the largest sieve fraction from the mill feed or the feed to each stage of breakage. The very fine undersize is not included as a stage.

The breakage function described by Equation (11.2) could be used. For the classification matrix, which gives the proportion of each size that enters the next stage of breakage, the value of the element in the first stage C11 equals 1. That is, all of size fraction 1 is completely reduced to a lower size and all the particles of the classification underflow are the feed to the second stage of breakage and so on. Hence, the classification matrix is a descending series. If we take the 2 series, then the classification matrix C can be written as

The selection matrix S is machine dependent. It is affected by machine characteristics, such as length (including length of rods) and the speed of operation. Both B and C have to be constant to determine the selection function S within a stage.

Thus for each stage a similar matrix can be developed resulting in a step matrix which provides a solution of the rod mill model. Calculations are similar to that shown previously for grinding mill models.

The industrial comminution process under consideration has the following four units: Rod mill, Ball mill, hydro-cyclones, and water sumps. Fresh feed from the bin is fed to the rod mill along with water. The slurry generated from the rod mill is mixed with the slurry from the ball mill in a primary sump. The primary sump outlet stream is sent to the primary cyclone. The overflow from the primary cyclone goes to the secondary sump and the underflow is taken as a feed to the ball mill. The slurry generated in the secondary sump is taken to another hydro-cyclone which is called as secondary cyclone. The underflow of the secondary cyclone is recycled back to the ball mill for grinding and the final product is the overflow which goes to a flotation circuit as feed. Water is added to both sumps to facilitate the flow of the slurry smoothly within the circuit. Complete circuit configuration can be found in Figure 1.

Modeling of individual unit operations of the grinding circuit is performed separately using an amalgamated approach of population balance and empirical correlations. A simulation of an entire circuit is done by using a connectivity matrix which connects all the unit operations in terms of binary numbers. Here 0 denotes no connection and 1 denotes existence of a connection. Multiple simultaneous differential algebraic equations were formed using the entire set of equations which can be solved using well tested public domain software, called DASSL (Petzold, 1983). Details on these model equations can be found elsewhere (Mitra and Gopinath,2004) and not attached here for the sake of brevity.

The product size from HPGR can be much finer than the corresponding ball or rod mill products. As an example, the results by Mrsky, Klemetti and Knuutinen [12] are given in Figure6.8 where, for the same net input energy (4kWh/t), the product sizes obtained from HPGR, ball and rod mills are plotted.

high-speed wire rod mills production process characteristics

high-speed wire rod mills production process characteristics

The development of high-speed wire rod mills started with the improvement of finishing mill and controlled cooling technology. The high-speed rolling mill has been widely used in the transformation of small and wire rolling mills since its mature production technology. This is because the non-twist finishing mill is superior to the tandem rolling mill in both production efficiency and product quality, and even in the lower speed range, it is superior to the tandem rolling mill.

Usually, the technological characteristics of high-speed wire rolling mill can be summarized as continuous, high-speed, non-twist and air-cooling, among which high-speed rolling is the most important one.

After a breakthrough in the rolling speed of high-speed wire rod mills, people are still pursuing higher rolling speed. Because the rolling speed is high, the production efficiency is high and the cost is low, so the speed is the benefit.

It is an effective means to solve the problems existing in various wire rod rolling mills in the past, and comprehensively solve the problems of product specifications, high section size accuracy, large plate weight, and high productivity. Only high finishing speed can have high productivity and solve the problem of temperature drop in the heavy wire rolling process. The high speed of finish rolling requires that there is no torsion in the rolling process.

process of rolling mills

process of rolling mills

Steel sections are generally rolled in several passes, whose number is determined by the ratio of initial input material and final cross section of finished product. The cross section area is reduced in each pass and form and the size of the stock gradually approach to the desired profile.

Rolling accounts for about 90 % of all materials produced by metal working process. It was first developed in the late 1500s. Hot Rolling is carried out at elevated temperature above the re-crystallization temperature. During this phase, the coarse-grained, brittle, and porous structure of the continuously cast steel is broken down into a wrought structure having finer grain size and improved properties.

A long product rolling mill comprised of equipment for reheating, rolling and cooling. The primary objectives of the rolling stage are to reduce the cross section of the incoming stock and to produce the planned section profile, mechanical properties and microstructure of the product.

When manufacturing long products, it is common to use a series of rolling stands in tandem to obtain high production rates. The stands are grouped into roughing, intermediate and finishing stages. Typical temperature, speed, inter-stand time (time between each stand), true strain and strain rate ranges at each stage are shown in Tab 1. Since cross-sectional area is reduced progressively at each set of rolls, the stock moves at different speeds at each stage of the rolling mill. A wire rod rolling mill, for example, gradually reduces the cross-sectional area of a starting billet (e.g., 150 mm square, 10-12 meters long) down to a finished rod (as small as 5.0 mm in diameter, 1.93 km long) at high finishing speeds (up to 120 m/sec).

The final dimensional quality of the rolled product is determined by the rolling stands within the finishing mill. The dimensional accuracy in the final product depends on many factors including the initial stock dimensions, roll pass sequence, temperature, microstructure, roll surface quality, roll and stand stiffness and the stock/roll friction condition.

With regards to the steel material steel, the development of the microstructure during rolling is complex and involves static and dynamic re-crystallization of austenite. From a practical point of view, the austenite grain size distribution in the rolled product is of paramount importance in controlling mechanical properties. In the roughing and intermediate stages of the rolling mill, the stock is moving slowly between the stands, such that the material has a chance to normalize itself as a result of recovery and re-crystallization. During the finishing rolling stage, the stock is traveling at a high speed between closely spaced stands and consequently, and does not have adequate time to normalize. This lack of normalization can have a significant effect on the final microstructure and mechanical properties of the rolled product.

Since the chemical composition is fixed for specific steel grades, the requirements for a particular product that can be controlled in the rolling mill consist of geometry, mechanical properties and microstructure. The product characteristics which are controlled are the geometric shape and tolerance. These are determined from the section profile of the finished product. Mechanical properties include yield and ultimate tensile strengths, % reduction in area (ductility) and hardness. Microstructure characteristics include grain size, grain distribution, phase composition and phase distribution.

Rolling involves macroscopic and microscopic phenomena (Fig 1). The macroscopic phenomena can be broadly classified as (i) heat flow during rolling, and (ii) deformation under application of rolling load. The macroscopic phenomena include such factors as given below.

The process at the microscopic level involves many complex physical phenomena associated with nucleation and evolution of the microstructure. The principal microscopic phenomena that are important during the process of rolling are (i) austenite re-crystallization and grain growth, and (ii) transformation of austenite into ferrite, pearlite, bainite and martensite (and/or other phases).

The spread and side free surfaces are very important in rolling. Spread is defined as the dimension of the deformed stock after rolling in the direction perpendicular to the direction of rolling. It measures the increase of width of the stock due to the rolling deformation. The side free surface is defined as the region of the stock surface that does not come into contact with the rolls during the rolling process. The surface profile of a deformed stock depends on the spread, free surface profile, and the elongation of the stock. This means that the final shape of the stock is mainly dependent on these parameters. Since the final shape of the stock is very important for the rolled product, these parameters are very crucial to a roll pass designer when designing a particular rolling pass for specific shape and size requirements. Accuracy in calculating these parameters are critical when satisfying such geometric requirements as roundness (in case of bars and rods) and tolerance. Roundness is defined as the difference between maximum diameter and minimum diameter. Tolerance is the allowable difference in maximum / minimum dimensions with respect to nominal dimensions.

The mean effective plastic strain is extremely important for predicting and controlling the mechanical properties of the rolled product after rolling The mean effective plastic strain at a rolling stand is defined as the maximum average effective (equivalent) plastic strain of the rolling stock at a given mill stand during the rolling process. The microstructure evolution requires thermo-mechanical variables such as mean effective plastic strain, mean effective plastic strain rate and temperature at each rolling stands. Temperature evolution due the mechanical energy converted to heat during the deformation process is also dependent on mean effective plastic strain and mean effective plastic strain rate. Furthermore, mean effective plastic strain rate is in turn a function of mean effective strain and the process time. All of this suggests that the capability of predicting mean plastic strain is essential for controlling the mechanical properties and microstructure of the rolled product.

Calculation of roll force is important because calculation of torque and power in a rolling mill is based on calculation of roll force. Accurate prediction of roll force for grooved rolling is considerably more difficult than predicting the geometry of the rolling stock. There are essentially three problems, present during the rolling as well but somewhat easy to handle. They are (i) resistance of material to deformation, as a function of strain, strain rate and temperature, (ii) the ability to calculate the distributions of the strains, strain rates, stress and temperature in the deformation zone, and (iii) the conditions at the roll metal interface, i.e., the coefficients of friction and heat transfers.

One more important parameter of high-speed high temperature rolling is the flow-stress behaviour of the particular steel grade. Flow stress is defined, as the instantaneous yield stress or true stress of a steel defined when the steel starts to undergo continuous plastic deformation. The two principal methods for accurately obtaining the flow stress of a particular grade of steel are direct experimental results and empirical constitutive equations. Empirical constitutive equations are often derived from the regression analysis of experimental data. Typically these equations define the flow strength of a material as a function of the variable considered important.

Rolls are the tools of the rolling mill and are the costliest consumable in a rolling mill. The way the rolls are used to execute their duty of deforming steel is in many cases largely determined by the roll pass design. The purpose of the roll pass design is (i) production of correct profile within tolerance limits with good surface finish (free from surface defects), (ii) maximum productivity at the lowest cost, (iii) minimum roll wear, (iv) easy working, and (v) optimum energy utilization.

The accuracy and speed of working and roll life are all related to the roll pass design and the choice of the roll material. The rolling sequence of a roll pass design is subject to the limitations applied by the rolling load, the roll strength and the torque available for rolling. Roll pass design is also to ensure that the physical dimensions and material of the roll are capable of withstanding the heaviest loads arising during the rolling sequence.

The material of the roll is important since it must be capable of withstanding loads which plastically deforms the rolling stock without itself being plastically deformed. In the rolling of hot steel, this is not a difficult problem and iron or steel rolls are suitable if they are operated at a temperature considerably lower than that of the rolling stock. The choice of roll material whether cast iron or steel (cast or forged) depends on the specific duty the rolls are to perform and the important properties such as surface toughness, resistance to thermal cracking or shock loading or hard wearing properties. The selection of any particular roll depends on production demands, initial cost, and the specific qualities required. Tungsten carbide rolls are generally used in wire rod finishing blocks and in some shape rolling applications. These carbide rolls require high quality cooling water in a narrow pH range and limited hardness.

The roll material is important to estimate the loads which the rolls must withstand. In addition it suggests what mill size is most suitable for given ranges of products so as to ensure reasonable efficiency in working the mill. Perhaps one of the most important single factors where roll life is concerned is the wear properties of the roll material.

During the hot rolling of steel, heat is transferred to the rolls. If not cooled, the heat buildup causes increase in the temperature of the roll to a temperature equal to that of the stock being rolled. At this stage the roll would also undergo plastic deformation. To remove the heat from the roll, cooling water is applied. The difficulty in the removal of the heat from the roll is the result of two factors. The first is called the coefficient of thermal conductivity and the second is the interface between the roll and the rolling stock compared to that of the cooling water and the roll. Heat is transferred by conduction, convection, and radiation.

During the contact time of the rolling stock in the pass, the hot rolling stock heats the roll due to conduction during the contact time with the roll. As a result, the temperature profile on the surface of the roll increases when in contact with the roll and then drops as the heat is absorbed by the roll body. This also means that the best place to remove the heat from the roll is immediately after the bar leaves contact with the roll. The best rate of heat removal occurs when the difference in temperature is the greatest. A typical roll cooling water delivery system consists of holes in the delivery guide for the application of water as close to the point where the rolling stock leaves contact with the roll as possible. Two half circle water pipes for each roll also deliver secondary cooling water to assure the heat of rolling does not penetrate the roll body. The application of cooling water is to be controlled so that the water does not fall on the rolling stock at the entry point to the rolls. In case it happens, it only cool the rolling stock, create steam pockets between the roll and the rolling stock, and waste water that could be better used on the other side of the roll. To minimize roll wear, roll cooling water must be applied as close to the point where the rolling stock leaves the roll. Typical pressures of cooling water are 2 kg/sq cm to 5 kg/sq cm at a flow rate of about 1.5 litres / mm per minute. The best delivery systems use tube, nozzle and spray headers to get soft cooling at low pressure and high flow, not a hard jet that bounces the water off of the roll.

Roll surface degradation occurs primarily due to the thermal cycling of the heating and cooling of the surface versus the relatively steady state of the subsurface and adjacent material. This creates local tension and compression as the roll moves through 360 deg of rotation. The objective of roll cooling is to minimize this cycle. The objective of roll material selection is to use materials that can tolerate this cycle without fire-cracking, crazing, or wearing prematurely. The fire-cracks developed on the roll surface are required to be removed by turning down considerable material of the roll and in the process reducing the roll diameter. This affects the roll life and increases the roll cost per ton.

It is a fact that all mill rolls eventually deteriorate and the roll passes need to be changed to achieve size control and finished product surface quality. When the roll diameter reduces to less than the minimum diameter required by the mill stand after turning down, then the roll is to be discarded.

The goal of mill and the roll guide setup is to get the first bar rolled when changing product, on the cooling bed within the tolerance so that it is a saleable product. The data required to perform this function is usually provided in two forms. One is given by the mill builders and provides information about rolls, guide parts, and other equipment that needs to be changed from the previous setup. It also includes gap settings, guide adjustments, and any special instructions.

Mill floor and pulpit setup sheets also contain loop height settings, motor rpm (revolutions per minute), run-out speed, production rate, R-Factors, shear setup information and other pertinent information. To enable the fastest startup possible, the retained information should reflect the conditions at startup. That is, if the rolls are always dressed at change over, the R-Factors should be what they were the last successful rolling on new rolls. Data collected at the end of a rolling with used rolls will not be accurate when rolling on new rolls.

In a continuous mill, speed matching the stand to achieve a constant mass flow through the mill assures a low cobble rate and fewer defects. High tension can stretch reduce the cross section of the bar making shape control very difficult. At the extreme, tension can pull the bar apart, creating a cobble. Compression of the bar between stands can create flutter creating defects, or at the extreme will cause loop growth leading to a cobble.

Using the working diameter of the rolls, the roll rpm (revolutions per minute) is matched to the bar speed through the mill. As the rolls wear and the spread of the bar in the pass changes, the rpm of the stands need to be adjusted as the bar area changes. Most modern control systems modify the R-Factor as this occurs.

Input values for setting mill motor speeds are production rate, roll collar diameters and roll gaps, bar areas and widths, and gear ratios. Motor speed ratings are normally checked against calculated speeds.

Mill utilization is a measure of the percentage of time that the mill is rolling steel. The truest measure of performance is as a percentage of calendar time. Factors that influence utilization are maintenance outages, scheduled and unscheduled holiday outages, downtime for cobble clearing, roll and pass changes, excess billet gap, and other factors that create time when a billet is not in the mill. Good figures for rod and bar mills are 90 % to 93 %, for structural mills, the good mill utilization figures are 75 % to 78 %.

If a mill rolls 80 % of the calendar year, that is 365 x 24 x 0.80 = 7008 hours. If the mill rolls 800,000 tons per year, it runs at an average production rate of 114.16 tons/hour. If the utilization can be improved by 1 %, the available rolling hours is 365 x 24 x 0.81 = 7096.6, creating 87.6 extra rolling hours. At 114.16 tons/hour that is an additional 10,000 tons can be rolled.

Excess billet gap can be an unaccounted for loss of rolling time. If a mill rolls 800,000 tons per year using billets of 1.25 ton weight, it rolls 640,000 billets per year. That is 639,999 billet gaps. If the average billet gap is 5 seconds that is (5 sec x 639,999)/3600 sec/hour = 888.89 hours of billet gap. If the average billet gap is reduced by 0.5 second that would be (4.5 sec x 639,999)/3600 sec/hour = 800 hours of billet gap, creating an additional 88.89 hours of rolling time. At 114.16 tons/hour that is an additional 10147 tons of rolled steel.

Yield is the measurement of production loss from furnace charge to bundled, piled, or coiled finished product. The factors that influence yield are scale loss, crop loss, cobble loss, and any other factor that reduces the weight of the finished product. When the billet is charged into the reheat furnace, it is either weighed or assumed to have a nominal weight based on its cross section and grade. As it progresses through the furnace, scale is formed that is removed at the descaler or fall off during rolling. This can amount to around 1 % to 1.2 % of the charged weight. Shears that crop the malformed front end of the bar as it progresses through the mill can remove up to 0.3 m to 0.4 m of material at each shear. After dividing the bar onto the cooling bed, a cold shear or saw cuts the bar to saleable lengths, cleaning up the variations in length. Structural mills often take an additional saw cut on piled and bundled material. All the removed material contributes to yield loss. Good figures for yield are around 97 % to 98 % for bar and rod mills, and 92 % t0 94 % for structural mills. If the product is rolled with negative tolerance and sold on nominal weight basis then the yield becomes much higher. Because of this reasons some of the rebars mills which are rolling with negative tolerance, and selling rebars on nominal weight basis are reporting a finished product yield of 100 % or more, though their nominal mill yield is normal 97 %.

Cobble rate is the measure of the percentage of charged billets lost to cobbles. If the cobble rate is 0.75 %, then 0.75 % of all billets charged are lost to cobbles. If a mill rolls 640,000 billets per year then it means that 4800 billets are lost. At 1.25 tons per billet the loss in tons is 6000 tons. Hence it necessary that all attempts are to be made in the mill to reduce the cobble rate.

sms group gmbh: bar and wire rod mills

sms group gmbh: bar and wire rod mills

What's special about our bar and wire rod mills is not only their high flexibility, but also their proven reliability. There is an array of products our state-of-the-art mills can manufacture in one mill: angles, squares, flats, channels, rounds, and wire rod. This top versatility also means you can efficiently produce all sizes, materials, and alloys.

For producing rebars with lower operational cost and to increase the efficiency we have our High Speed Delivery system HSD available, which allows to run with 45m/s onto the cooling bed. Compared to the traditional slitting method, conversion costs can be saved in the range of 6 to 13 Euro/ton. The Vertical Compact Coiler VCC is todays state of the art solution for producing compact and torsion-free coils - exactly what more and more rebar processors are requiring for automatic handling in cut and bend machines.

The new measuring gauge at the exit side of the 3-roll block applies light section technology. Using our laser/image technology, four sensors perform synchronous, contact-free measurements over the entire cross section of the bar. There are no moving or oscillating parts, making the system almost maintenance-free. It achieves a scanning rate of 500 scans per second. That's why the system can produce a true-shape cross-section from up to 400 synchronous measuring points in a shared coordination system. You can see the result displayed with utmost precision.

Our MEERdrive technology makes roll ring management significantly easier, offers exceptional pass design flexibility, and minimizes maintenance. Precise rolling process control guarantees the required end product properties. Our system also optimizes roll ring utilization and slashes energy consumption. Why? Because individual motors operate much more efficiently than group drives.

However, not only a service partner for your plants and machines, SMS group is also there for your staff. Furthermore, You can enroll on standardized and individual training programs designed for you by our SMS TECademy. That ensures you strengthen your competence as a plant owner.

Whether you require one-off equipment checks, continuous condition monitoring, remote service, or regular plant inspections: our service experts will take care of it all. You can even outsource your complete maintenance operations to us. This ensures excellent plant availability plus best production results.

When the spare parts you need are no longer available or the new generation is not 100% compatible, you risk plant standstills. That's why SMS group constantly monitors the availability of all parts and, where necessary, offers modern alternatives - even for parts from third-party suppliers. This ensures competitiveness and full productivity over the entire life cycle of your plant.

Even plants "built to last" need to be critically examined from time to time, because markets and production processes are continuously evolving. Together with you, our service experts will find the best revamp options for your requirements. Once again bang up to date, your plants will then be ready to bolster your strong position on the market.

Connect with us for direct news and updates on the go. Find out more about projects, products, and innovations at SMS group. Set your personal preferences and see only content based on your interests. Turn on push notifications and youll never need to miss out on the latest news in and around SMS group

Related Equipments